代数索非平移的不变集和内态的无势性

Pub Date : 2024-02-15 DOI:10.1017/etds.2023.120
TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT, XUAN KIEN PHUNG
{"title":"代数索非平移的不变集和内态的无势性","authors":"TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT, XUAN KIEN PHUNG","doi":"10.1017/etds.2023.120","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>G</jats:italic> be a group and let <jats:italic>V</jats:italic> be an algebraic variety over an algebraically closed field <jats:italic>K</jats:italic>. Let <jats:italic>A</jats:italic> denote the set of <jats:italic>K</jats:italic>-points of <jats:italic>V</jats:italic>. We introduce algebraic sofic subshifts <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline1.png\" /> <jats:tex-math> ${\\Sigma \\subset A^G}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and study endomorphisms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline2.png\" /> <jats:tex-math> $\\tau \\colon \\Sigma \\to \\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We generalize several results for dynamical invariant sets and nilpotency of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline3.png\" /> <jats:tex-math> $\\tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline4.png\" /> <jats:tex-math> $\\tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover <jats:italic>G</jats:italic> is infinite, finitely generated and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline5.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is topologically mixing, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline6.png\" /> <jats:tex-math> $\\tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant sets and nilpotency of endomorphisms of algebraic sofic shifts\",\"authors\":\"TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT, XUAN KIEN PHUNG\",\"doi\":\"10.1017/etds.2023.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>G</jats:italic> be a group and let <jats:italic>V</jats:italic> be an algebraic variety over an algebraically closed field <jats:italic>K</jats:italic>. Let <jats:italic>A</jats:italic> denote the set of <jats:italic>K</jats:italic>-points of <jats:italic>V</jats:italic>. We introduce algebraic sofic subshifts <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001207_inline1.png\\\" /> <jats:tex-math> ${\\\\Sigma \\\\subset A^G}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and study endomorphisms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001207_inline2.png\\\" /> <jats:tex-math> $\\\\tau \\\\colon \\\\Sigma \\\\to \\\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We generalize several results for dynamical invariant sets and nilpotency of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001207_inline3.png\\\" /> <jats:tex-math> $\\\\tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001207_inline4.png\\\" /> <jats:tex-math> $\\\\tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover <jats:italic>G</jats:italic> is infinite, finitely generated and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001207_inline5.png\\\" /> <jats:tex-math> $\\\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is topologically mixing, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385723001207_inline6.png\\\" /> <jats:tex-math> $\\\\tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个群,让 V 是一个代数封闭域 K 上的代数簇,让 A 表示 V 的 K 点集合。我们引入代数的 sofic 子转移 ${Sigma \subset A^G}$ 并研究 $\tau \colon \Sigma \to \Sigma $ 的内同构。我们对有限字母蜂窝自动机中众所周知的动力学不变集和 $\tau $ 的无势性的几个结果进行了归纳。在温和的假设条件下,我们证明当且仅当 $\tau $ 的极限集(即其迭代的图像的交集)是单子时,它才是无穷的。此外,如果 G 是无限的、有限生成的,并且 $\Sigma $ 是拓扑混合的,那么我们证明,只有当其极限集由周期性配置组成,并且具有有限的字母值集时,$\tau $ 才是无穷的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Invariant sets and nilpotency of endomorphisms of algebraic sofic shifts
Let G be a group and let V be an algebraic variety over an algebraically closed field K. Let A denote the set of K-points of V. We introduce algebraic sofic subshifts ${\Sigma \subset A^G}$ and study endomorphisms $\tau \colon \Sigma \to \Sigma $ . We generalize several results for dynamical invariant sets and nilpotency of $\tau $ that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that $\tau $ is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover G is infinite, finitely generated and $\Sigma $ is topologically mixing, we show that $\tau $ is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信