Asmaa H. Abobakr, Hussien S. Hussien, Mahmoud B. A. Mansour, Hillal M. Elshehabey
{"title":"反常扩散捕食者-猎物模型中的行进波面","authors":"Asmaa H. Abobakr, Hussien S. Hussien, Mahmoud B. A. Mansour, Hillal M. Elshehabey","doi":"10.1515/zna-2023-0306","DOIUrl":null,"url":null,"abstract":"In this paper, we study traveling wavefronts in an anomalous diffusion predator–prey model with the modified Leslie–Gower and Holling-type II schemes. We perform a traveling wave analysis to show that the model has heteroclinic trajectories connecting two steady state solutions of the resulting system of fractional partial differential equations and corresponding to traveling wavefronts. This also includes numerical results to show the existence of traveling wavefronts. Furthermore, we obtain the numerical time-dependent solutions in order to show the evolution of wavefronts. We find that wavefronts exist that travel faster in the anomalous subdiffusive regime than in the normal diffusive one. Our results emphasize that the main properties of traveling waves and invasions are altered by anomalous subdiffusion in this model.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling wavefronts in an anomalous diffusion predator–prey model\",\"authors\":\"Asmaa H. Abobakr, Hussien S. Hussien, Mahmoud B. A. Mansour, Hillal M. Elshehabey\",\"doi\":\"10.1515/zna-2023-0306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study traveling wavefronts in an anomalous diffusion predator–prey model with the modified Leslie–Gower and Holling-type II schemes. We perform a traveling wave analysis to show that the model has heteroclinic trajectories connecting two steady state solutions of the resulting system of fractional partial differential equations and corresponding to traveling wavefronts. This also includes numerical results to show the existence of traveling wavefronts. Furthermore, we obtain the numerical time-dependent solutions in order to show the evolution of wavefronts. We find that wavefronts exist that travel faster in the anomalous subdiffusive regime than in the normal diffusive one. Our results emphasize that the main properties of traveling waves and invasions are altered by anomalous subdiffusion in this model.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2023-0306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们用修正的 Leslie-Gower 和 Holling-type II 方案研究了异常扩散捕食者-猎物模型中的行波面。我们通过行波分析表明,该模型具有连接所得到的分数偏微分方程系统的两个稳态解的异折线轨迹,并与行波面相对应。这还包括数值结果,以显示行波面的存在。此外,我们还获得了随时间变化的数值解,以显示波面的演变。我们发现,反常亚扩散体系中的波面比正常扩散体系中的波面传播得更快。我们的结果强调,在这个模型中,反常亚扩散改变了行波和入侵的主要特性。
Traveling wavefronts in an anomalous diffusion predator–prey model
In this paper, we study traveling wavefronts in an anomalous diffusion predator–prey model with the modified Leslie–Gower and Holling-type II schemes. We perform a traveling wave analysis to show that the model has heteroclinic trajectories connecting two steady state solutions of the resulting system of fractional partial differential equations and corresponding to traveling wavefronts. This also includes numerical results to show the existence of traveling wavefronts. Furthermore, we obtain the numerical time-dependent solutions in order to show the evolution of wavefronts. We find that wavefronts exist that travel faster in the anomalous subdiffusive regime than in the normal diffusive one. Our results emphasize that the main properties of traveling waves and invasions are altered by anomalous subdiffusion in this model.