{"title":"Leavitt 路径代数的湮没子表征图","authors":"LIA VAŠ","doi":"10.1017/s0004972723001466","DOIUrl":null,"url":null,"abstract":"If <jats:italic>E</jats:italic> is a graph and <jats:italic>K</jats:italic> is a field, we consider an ideal <jats:italic>I</jats:italic> of the Leavitt path algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001466_inline1.png\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>E</jats:italic> over <jats:italic>K</jats:italic>. We describe the admissible pair corresponding to the smallest graded ideal which contains <jats:italic>I</jats:italic> where the grading in question is the natural grading of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001466_inline2.png\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001466_inline3.png\" /> <jats:tex-math> ${\\mathbb {Z}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using this description, we show that the right and the left annihilators of <jats:italic>I</jats:italic> are <jats:italic>equal</jats:italic> (which may be somewhat surprising given that <jats:italic>I</jats:italic> may not be self-adjoint). In particular, we establish that both annihilators correspond to the same admissible pair and its description produces the characterisation from the title. Then, we turn to the property that the right (equivalently left) annihilator of any ideal is a direct summand and recall that a unital ring with this property is said to be quasi-Baer. We exhibit a condition on <jats:italic>E</jats:italic> which is equivalent to unital <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001466_inline4.png\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having this property.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GRAPH CHARACTERISATION OF THE ANNIHILATOR IDEALS OF LEAVITT PATH ALGEBRAS\",\"authors\":\"LIA VAŠ\",\"doi\":\"10.1017/s0004972723001466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If <jats:italic>E</jats:italic> is a graph and <jats:italic>K</jats:italic> is a field, we consider an ideal <jats:italic>I</jats:italic> of the Leavitt path algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001466_inline1.png\\\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>E</jats:italic> over <jats:italic>K</jats:italic>. We describe the admissible pair corresponding to the smallest graded ideal which contains <jats:italic>I</jats:italic> where the grading in question is the natural grading of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001466_inline2.png\\\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001466_inline3.png\\\" /> <jats:tex-math> ${\\\\mathbb {Z}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using this description, we show that the right and the left annihilators of <jats:italic>I</jats:italic> are <jats:italic>equal</jats:italic> (which may be somewhat surprising given that <jats:italic>I</jats:italic> may not be self-adjoint). In particular, we establish that both annihilators correspond to the same admissible pair and its description produces the characterisation from the title. Then, we turn to the property that the right (equivalently left) annihilator of any ideal is a direct summand and recall that a unital ring with this property is said to be quasi-Baer. We exhibit a condition on <jats:italic>E</jats:italic> which is equivalent to unital <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001466_inline4.png\\\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having this property.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
如果 E 是一个图,K 是一个域,我们将考虑 E 在 K 上的莱维特路径代数 $L_K(E)$ 的理想 I。我们将描述与包含 I 的最小分级理想相对应的可容许对,其中的分级是 $L_K(E)$ 的自然分级 ${mathbb {Z}}$ 。利用这一描述,我们可以证明 I 的右湮和左湮是相等的(鉴于 I 可能不是自结的)。特别是,我们确定这两个湮没器对应于同一可容许对,并且其描述产生了标题中的特征。然后,我们将讨论任意理想的右湮没器(等同于左湮没器)是直接和这一性质,并回顾具有这一性质的单素环被称为准巴环。我们将展示 E 的一个条件,它等价于具有这一性质的单素 $L_K(E)$。
GRAPH CHARACTERISATION OF THE ANNIHILATOR IDEALS OF LEAVITT PATH ALGEBRAS
If E is a graph and K is a field, we consider an ideal I of the Leavitt path algebra $L_K(E)$ of E over K. We describe the admissible pair corresponding to the smallest graded ideal which contains I where the grading in question is the natural grading of $L_K(E)$ by ${\mathbb {Z}}$ . Using this description, we show that the right and the left annihilators of I are equal (which may be somewhat surprising given that I may not be self-adjoint). In particular, we establish that both annihilators correspond to the same admissible pair and its description produces the characterisation from the title. Then, we turn to the property that the right (equivalently left) annihilator of any ideal is a direct summand and recall that a unital ring with this property is said to be quasi-Baer. We exhibit a condition on E which is equivalent to unital $L_K(E)$ having this property.