基于神经网络算法的邻居发现协议异常检测系统

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"基于神经网络算法的邻居发现协议异常检测系统","authors":"","doi":"10.1007/s10207-024-00815-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The exponential increase in Internet-facing devices in the last decade has resulted in IP address exhaustion due to the limitations of the existing IPv4 address space. Therefore, the Internet Engineering Task Force engineered a new version of the Internet protocol known as Internet Protocol Version 6 (IPv6) to resolve the issue. However, IPv6 is highly dependent on the neighbor discovery protocol (NDP), which, unfortunately, has well-known vulnerabilities in its underlying messaging protocol, the Internet Control Message Protocol version 6. So, the NDP flaws leave the IPv6 network open to many security threats and attacks, including man-in-the-middle, spoofing, and denial-of-service attacks, which are the most annoying attack at the network layer. Unfortunately, one of the critical issues plaguing the existing anomaly-based detection system is the effectiveness of detecting NDP-based DDoS attacks, which requires urgent attention. This paper suggests a system to find network traffic patterns that are not normal that are caused by NDP-based attacks. It does this by teaching neural networks how to recognize network attack patterns using the backpropagation algorithm. The proposed system is a big step forward from where the field is now because it uses a complex neural network algorithm to create an NDP anomaly-based detection system. Using a real dataset to test the proposed system’s performance shows that it can find NDP anomalies with a 99.95% success rate, a 99.92% precision rate, a 99.98% recall rate, an F1-Score of 99.98%, and a 0.040% false positive rate. Also, the proposed approach shows better results compared to other existing approaches.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"117 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbor discovery protocol anomaly-based detection system using neural network algorithm\",\"authors\":\"\",\"doi\":\"10.1007/s10207-024-00815-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The exponential increase in Internet-facing devices in the last decade has resulted in IP address exhaustion due to the limitations of the existing IPv4 address space. Therefore, the Internet Engineering Task Force engineered a new version of the Internet protocol known as Internet Protocol Version 6 (IPv6) to resolve the issue. However, IPv6 is highly dependent on the neighbor discovery protocol (NDP), which, unfortunately, has well-known vulnerabilities in its underlying messaging protocol, the Internet Control Message Protocol version 6. So, the NDP flaws leave the IPv6 network open to many security threats and attacks, including man-in-the-middle, spoofing, and denial-of-service attacks, which are the most annoying attack at the network layer. Unfortunately, one of the critical issues plaguing the existing anomaly-based detection system is the effectiveness of detecting NDP-based DDoS attacks, which requires urgent attention. This paper suggests a system to find network traffic patterns that are not normal that are caused by NDP-based attacks. It does this by teaching neural networks how to recognize network attack patterns using the backpropagation algorithm. The proposed system is a big step forward from where the field is now because it uses a complex neural network algorithm to create an NDP anomaly-based detection system. Using a real dataset to test the proposed system’s performance shows that it can find NDP anomalies with a 99.95% success rate, a 99.92% precision rate, a 99.98% recall rate, an F1-Score of 99.98%, and a 0.040% false positive rate. Also, the proposed approach shows better results compared to other existing approaches.</p>\",\"PeriodicalId\":50316,\"journal\":{\"name\":\"International Journal of Information Security\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10207-024-00815-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00815-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 过去十年中,由于现有 IPv4 地址空间的限制,面向互联网的设备呈指数级增长,导致 IP 地址枯竭。因此,互联网工程任务组设计了一种新版本的互联网协议,即互联网协议版本 6(IPv6),以解决这一问题。然而,IPv6 高度依赖于邻居发现协议(NDP),而不幸的是,该协议的底层信息协议(互联网控制消息协议版本 6)存在众所周知的漏洞。因此,NDP 的缺陷使 IPv6 网络面临许多安全威胁和攻击,包括中间人攻击、欺骗和拒绝服务攻击,而这些攻击是网络层最恼人的攻击。遗憾的是,困扰现有基于异常的检测系统的关键问题之一是检测基于 NDP 的 DDoS 攻击的有效性,这亟需引起重视。本文提出了一种系统,用于发现由基于 NDP 的攻击引起的不正常网络流量模式。为此,它使用反向传播算法教神经网络如何识别网络攻击模式。与目前的领域相比,所提出的系统向前迈进了一大步,因为它使用了复杂的神经网络算法来创建基于 NDP 的异常检测系统。使用真实数据集测试所提系统的性能表明,它能以 99.95% 的成功率、99.92% 的精确率、99.98% 的召回率、99.98% 的 F1 分数和 0.040% 的误报率发现 NDP 异常。此外,与其他现有方法相比,建议的方法显示出更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neighbor discovery protocol anomaly-based detection system using neural network algorithm

Abstract

The exponential increase in Internet-facing devices in the last decade has resulted in IP address exhaustion due to the limitations of the existing IPv4 address space. Therefore, the Internet Engineering Task Force engineered a new version of the Internet protocol known as Internet Protocol Version 6 (IPv6) to resolve the issue. However, IPv6 is highly dependent on the neighbor discovery protocol (NDP), which, unfortunately, has well-known vulnerabilities in its underlying messaging protocol, the Internet Control Message Protocol version 6. So, the NDP flaws leave the IPv6 network open to many security threats and attacks, including man-in-the-middle, spoofing, and denial-of-service attacks, which are the most annoying attack at the network layer. Unfortunately, one of the critical issues plaguing the existing anomaly-based detection system is the effectiveness of detecting NDP-based DDoS attacks, which requires urgent attention. This paper suggests a system to find network traffic patterns that are not normal that are caused by NDP-based attacks. It does this by teaching neural networks how to recognize network attack patterns using the backpropagation algorithm. The proposed system is a big step forward from where the field is now because it uses a complex neural network algorithm to create an NDP anomaly-based detection system. Using a real dataset to test the proposed system’s performance shows that it can find NDP anomalies with a 99.95% success rate, a 99.92% precision rate, a 99.98% recall rate, an F1-Score of 99.98%, and a 0.040% false positive rate. Also, the proposed approach shows better results compared to other existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information Security
International Journal of Information Security 工程技术-计算机:理论方法
CiteScore
6.30
自引率
3.10%
发文量
52
审稿时长
12 months
期刊介绍: The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation. Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信