水和氮对枸杞产量、水和氮利用效率的调节作用

IF 2.7 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
{"title":"水和氮对枸杞产量、水和氮利用效率的调节作用","authors":"","doi":"10.1007/s40333-024-0003-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Wolfberry (<em>Lycium barbarum</em> L.) is important for health care and ecological protection. However, it faces problems of low productivity and resource utilization during planting. Exploring reasonable models for water and nitrogen management is important for solving these problems. Based on field trials in 2021 and 2022, this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height, stem diameter, crown width, yield, and water (WUE) and nitrogen use efficiency (NUE). The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity (<em>θ</em>f), and four water levels, i.e., adequate irrigation (W0, 75%–85% <em>θ</em><sub>f</sub>), mild water deficit (W1, 65%–75% <em>θ</em><sub>f</sub>), moderate water deficit (W2, 55%–65% <em>θ</em><sub>f</sub>), and severe water deficit (W3, 45%–55% <em>θ</em><sub>f</sub>) were used, and three nitrogen application levels, i.e., no nitrogen (N0, 0 kg/hm<sup>2</sup>), low nitrogen (N1, 150 kg/hm<sup>2</sup>), medium nitrogen (N2, 300 kg/hm<sup>2</sup>), and high nitrogen (N3, 450 kg/hm<sup>2</sup>) were implied. The results showed that irrigation and nitrogen application significantly affected plant height, stem diameter, and crown width of wolfberry at different growth stages (<em>P</em>&lt;0.01), and their maximum values were observed in W1N2, W0N2, and W1N3 treatments. Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment. Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment. However, under other water treatments, the values first increased and then decreased with increasing nitrogen application. Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment. Irrigation water use efficiency (IWUE, 8.46 kg/(hm<sup>2</sup>•mm)), WUE (6.83 kg/(hm<sup>2</sup>•mm)), partial factor productivity of nitrogen (PFPN, 2.56 kg/kg), and NUE (14.29 kg/kg) reached their highest values in W2N2, W1N2, W1N2, and W1N1 treatments. Results of principal component analysis (PCA) showed that yield, WUE, and NUE were better in W1N2 treatment, making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province, China and similar planting areas.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"25 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry\",\"authors\":\"\",\"doi\":\"10.1007/s40333-024-0003-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Wolfberry (<em>Lycium barbarum</em> L.) is important for health care and ecological protection. However, it faces problems of low productivity and resource utilization during planting. Exploring reasonable models for water and nitrogen management is important for solving these problems. Based on field trials in 2021 and 2022, this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height, stem diameter, crown width, yield, and water (WUE) and nitrogen use efficiency (NUE). The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity (<em>θ</em>f), and four water levels, i.e., adequate irrigation (W0, 75%–85% <em>θ</em><sub>f</sub>), mild water deficit (W1, 65%–75% <em>θ</em><sub>f</sub>), moderate water deficit (W2, 55%–65% <em>θ</em><sub>f</sub>), and severe water deficit (W3, 45%–55% <em>θ</em><sub>f</sub>) were used, and three nitrogen application levels, i.e., no nitrogen (N0, 0 kg/hm<sup>2</sup>), low nitrogen (N1, 150 kg/hm<sup>2</sup>), medium nitrogen (N2, 300 kg/hm<sup>2</sup>), and high nitrogen (N3, 450 kg/hm<sup>2</sup>) were implied. The results showed that irrigation and nitrogen application significantly affected plant height, stem diameter, and crown width of wolfberry at different growth stages (<em>P</em>&lt;0.01), and their maximum values were observed in W1N2, W0N2, and W1N3 treatments. Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment. Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment. However, under other water treatments, the values first increased and then decreased with increasing nitrogen application. Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment. Irrigation water use efficiency (IWUE, 8.46 kg/(hm<sup>2</sup>•mm)), WUE (6.83 kg/(hm<sup>2</sup>•mm)), partial factor productivity of nitrogen (PFPN, 2.56 kg/kg), and NUE (14.29 kg/kg) reached their highest values in W2N2, W1N2, W1N2, and W1N1 treatments. Results of principal component analysis (PCA) showed that yield, WUE, and NUE were better in W1N2 treatment, making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province, China and similar planting areas.</p>\",\"PeriodicalId\":49169,\"journal\":{\"name\":\"Journal of Arid Land\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Arid Land\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s40333-024-0003-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0003-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 枸杞(Lycium barbarum L.)是重要的保健和生态保护植物。然而,枸杞在种植过程中面临着产量低、资源利用率低等问题。探索合理的水氮管理模式对解决这些问题非常重要。本研究以2021年和2022年的田间试验为基础,分析了控制土壤水分和氮肥施用水平对枸杞高度、茎径、冠幅、产量、水分利用效率(WUE)和氮肥利用效率(NUE)的影响。土壤水分的上限和下限由土壤含水量占田间持水量的百分比(θf)控制,有四个水分水平,即充分灌溉(W0,75%-85% θf)、轻度缺水(W1,65%-75% θf)、中度缺水(W2,55%-65% θf)和严重缺水(W3,45%-55% θf)、无氮(N0,0 kg/hm2)、低氮(N1,150 kg/hm2)、中氮(N2,300 kg/hm2)和高氮(N3,450 kg/hm2)。结果表明,灌溉和施氮对不同生长阶段枸杞的株高、茎径和冠幅均有显著影响(P<0.01),其中 W1N2、W0N2 和 W1N3 处理的影响最大。在相同的水处理条件下,枸杞的单株干重和产量随着施氮量的增加先增加后减少。在 W0 处理下,百粒干重和干重百分比随施氮量的增加而增加。但在其他水处理下,随着施氮量的增加,这些数值先增加后减少。在相同的施氮处理下,枸杞的产量及其组分随着水分亏缺的增加先增加后减少。灌溉水利用效率(IWUE,8.46 kg/(hm2-mm))、水分利用效率(WUE,6.83 kg/(hm2-mm))、氮的部分要素生产率(PFPN,2.56 kg/kg)和氮的利用效率(NUE,14.29 kg/kg)在 W2N2、W1N2、W1N2 和 W1N1 处理中达到最高值。主成分分析(PCA)结果表明,W1N2 处理的产量、水分利用效率和氮利用效率均较高,是适合中国甘肃省黄河灌区及类似种植区的一种水氮管理模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry

Abstract

Wolfberry (Lycium barbarum L.) is important for health care and ecological protection. However, it faces problems of low productivity and resource utilization during planting. Exploring reasonable models for water and nitrogen management is important for solving these problems. Based on field trials in 2021 and 2022, this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height, stem diameter, crown width, yield, and water (WUE) and nitrogen use efficiency (NUE). The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity (θf), and four water levels, i.e., adequate irrigation (W0, 75%–85% θf), mild water deficit (W1, 65%–75% θf), moderate water deficit (W2, 55%–65% θf), and severe water deficit (W3, 45%–55% θf) were used, and three nitrogen application levels, i.e., no nitrogen (N0, 0 kg/hm2), low nitrogen (N1, 150 kg/hm2), medium nitrogen (N2, 300 kg/hm2), and high nitrogen (N3, 450 kg/hm2) were implied. The results showed that irrigation and nitrogen application significantly affected plant height, stem diameter, and crown width of wolfberry at different growth stages (P<0.01), and their maximum values were observed in W1N2, W0N2, and W1N3 treatments. Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment. Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment. However, under other water treatments, the values first increased and then decreased with increasing nitrogen application. Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment. Irrigation water use efficiency (IWUE, 8.46 kg/(hm2•mm)), WUE (6.83 kg/(hm2•mm)), partial factor productivity of nitrogen (PFPN, 2.56 kg/kg), and NUE (14.29 kg/kg) reached their highest values in W2N2, W1N2, W1N2, and W1N1 treatments. Results of principal component analysis (PCA) showed that yield, WUE, and NUE were better in W1N2 treatment, making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province, China and similar planting areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Arid Land
Journal of Arid Land ENVIRONMENTAL SCIENCES-
CiteScore
4.70
自引率
6.70%
发文量
768
审稿时长
3.2 months
期刊介绍: The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large. The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信