洛伦兹流形中空间相似图平移的稳定性结果

IF 1.2 4区 数学 Q1 MATHEMATICS
{"title":"洛伦兹流形中空间相似图平移的稳定性结果","authors":"","doi":"10.1007/s10473-024-0206-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we investigate spacelike graphs defined over a domain Ω ⊂ <em>M</em><sup><em>n</em></sup> in the Lorentz manifold <em>M</em><sup><em>n</em></sup> × ℝ with the metric −d<em>s</em><sup>2</sup> + <em>σ</em>, where <em>M</em><sup><em>n</em></sup> is a complete Riemannian <em>n</em>-manifold with the metric σ, Ω has piecewise smooth boundary, and ℝ denotes the Euclidean 1-space. We prove an interesting stability result for translating spacelike graphs in <em>M</em><sup><em>n</em></sup> × ℝ under a conformal transformation.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stability result for translating spacelike graphs in Lorentz manifolds\",\"authors\":\"\",\"doi\":\"10.1007/s10473-024-0206-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we investigate spacelike graphs defined over a domain Ω ⊂ <em>M</em><sup><em>n</em></sup> in the Lorentz manifold <em>M</em><sup><em>n</em></sup> × ℝ with the metric −d<em>s</em><sup>2</sup> + <em>σ</em>, where <em>M</em><sup><em>n</em></sup> is a complete Riemannian <em>n</em>-manifold with the metric σ, Ω has piecewise smooth boundary, and ℝ denotes the Euclidean 1-space. We prove an interesting stability result for translating spacelike graphs in <em>M</em><sup><em>n</em></sup> × ℝ under a conformal transformation.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0206-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0206-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了洛伦兹流形 Mn × ℝ 中定义在域 Ω ⊂ Mn 上的空间ike 图,其度量为 -ds2 + σ,其中 Mn 是具有度量 σ 的完整黎曼 n 形,Ω 具有片断光滑边界,ℝ 表示欧几里得 1 空间。我们证明了在共形变换下 Mn × ℝ 中空间相似图平移的一个有趣的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stability result for translating spacelike graphs in Lorentz manifolds

Abstract

In this paper, we investigate spacelike graphs defined over a domain Ω ⊂ Mn in the Lorentz manifold Mn × ℝ with the metric −ds2 + σ, where Mn is a complete Riemannian n-manifold with the metric σ, Ω has piecewise smooth boundary, and ℝ denotes the Euclidean 1-space. We prove an interesting stability result for translating spacelike graphs in Mn × ℝ under a conformal transformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信