栖息地不断变化的非本地捕食者-猎物系统中解决方案的持续性

IF 1.2 4区 数学 Q1 MATHEMATICS
Min Zhao, Rong Yuan
{"title":"栖息地不断变化的非本地捕食者-猎物系统中解决方案的持续性","authors":"Min Zhao, Rong Yuan","doi":"10.1007/s10473-024-0318-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we mainly study the propagation properties of a nonlocal dispersal predator-prey system in a shifting environment. It is known that Choi <i>et al.</i> [J Differ Equ, 2021, 302: 807–853] studied the persistence or extinction of the prey and of the predator separately in various moving frames. In particular, they achieved a complete picture in the local diffusion case. However, the question of the persistence of the prey and of the predator in some intermediate moving frames in the nonlocal diffusion case was left open in Choi <i>et al.</i>’s paper. By using some <i>a prior</i> estimates, the Arzelà-Ascoli theorem and a diagonal extraction process, we can extend and improve the main results of Choi <i>et al.</i> to achieve a complete picture in the nonlocal diffusion case.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"215 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The persistence of solutions in a nonlocal predator-prey system with a shifting habitat\",\"authors\":\"Min Zhao, Rong Yuan\",\"doi\":\"10.1007/s10473-024-0318-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we mainly study the propagation properties of a nonlocal dispersal predator-prey system in a shifting environment. It is known that Choi <i>et al.</i> [J Differ Equ, 2021, 302: 807–853] studied the persistence or extinction of the prey and of the predator separately in various moving frames. In particular, they achieved a complete picture in the local diffusion case. However, the question of the persistence of the prey and of the predator in some intermediate moving frames in the nonlocal diffusion case was left open in Choi <i>et al.</i>’s paper. By using some <i>a prior</i> estimates, the Arzelà-Ascoli theorem and a diagonal extraction process, we can extend and improve the main results of Choi <i>et al.</i> to achieve a complete picture in the nonlocal diffusion case.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"215 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0318-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0318-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究非局部分散捕食者-猎物系统在移动环境中的传播特性。众所周知,Choi 等人[J Differ Equ, 2021, 302: 807-853]分别研究了不同运动帧中猎物和捕食者的持续或消亡。尤其是在局部扩散情况下,他们获得了完整的图像。然而,Choi 等人的论文对非局部扩散情况下猎物和捕食者在某些中间运动帧中的持续性问题却没有给出答案。通过使用一些先验估计、Arzelà-Ascoli 定理和对角线提取过程,我们可以扩展和改进 Choi 等人的主要结果,从而获得非局部扩散情况下的完整图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The persistence of solutions in a nonlocal predator-prey system with a shifting habitat

In this paper, we mainly study the propagation properties of a nonlocal dispersal predator-prey system in a shifting environment. It is known that Choi et al. [J Differ Equ, 2021, 302: 807–853] studied the persistence or extinction of the prey and of the predator separately in various moving frames. In particular, they achieved a complete picture in the local diffusion case. However, the question of the persistence of the prey and of the predator in some intermediate moving frames in the nonlocal diffusion case was left open in Choi et al.’s paper. By using some a prior estimates, the Arzelà-Ascoli theorem and a diagonal extraction process, we can extend and improve the main results of Choi et al. to achieve a complete picture in the nonlocal diffusion case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信