CFRP 加固再生红砖混凝土的机械损伤机理研究

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongcheng Ji, Zheng Li, Wenyuan Xu, Wei Li
{"title":"CFRP 加固再生红砖混凝土的机械损伤机理研究","authors":"Yongcheng Ji, Zheng Li, Wenyuan Xu, Wei Li","doi":"10.1515/rams-2023-0178","DOIUrl":null,"url":null,"abstract":"Three reinforcement ratios (0, 50, and 100%) of carbon fiber reinforced plastics (CFRP) were selected to improve the mechanical properties of recycled brick concrete in this study. Utilizing axial compression test, X-ray diffractometer analysis, the evolution of parameters such as compressive strength, peak stress, and elastic modulus of reclaimed concrete were analyzed. The reclaimed brick concrete’ stress distribution and damage mechanism were revealed. The aggregate internal failure and CFRP reinforcement effect mechanism are discussed. The finite element model of red brick concrete reinforced by CFRP under uniaxial compression is established. The constitutive model for CFRP-reinforced recycled brick concrete is proposed.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"17 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical damage mechanism investigation on CFRP strengthened recycled red brick concrete\",\"authors\":\"Yongcheng Ji, Zheng Li, Wenyuan Xu, Wei Li\",\"doi\":\"10.1515/rams-2023-0178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three reinforcement ratios (0, 50, and 100%) of carbon fiber reinforced plastics (CFRP) were selected to improve the mechanical properties of recycled brick concrete in this study. Utilizing axial compression test, X-ray diffractometer analysis, the evolution of parameters such as compressive strength, peak stress, and elastic modulus of reclaimed concrete were analyzed. The reclaimed brick concrete’ stress distribution and damage mechanism were revealed. The aggregate internal failure and CFRP reinforcement effect mechanism are discussed. The finite element model of red brick concrete reinforced by CFRP under uniaxial compression is established. The constitutive model for CFRP-reinforced recycled brick concrete is proposed.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2023-0178\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2023-0178","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究选择了三种碳纤维增强塑料(CFRP)增强比率(0、50 和 100%)来改善再生砖混凝土的力学性能。通过轴向压缩试验和 X 射线衍射仪分析,分析了再生混凝土抗压强度、峰值应力和弹性模量等参数的变化。揭示了再生砖混凝土的应力分布和破坏机理。讨论了骨料内部破坏和 CFRP 加固效应机理。建立了 CFRP 加固的红砖混凝土在单轴压缩条件下的有限元模型。提出了 CFRP 加固再生砖混凝土的组成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical damage mechanism investigation on CFRP strengthened recycled red brick concrete
Three reinforcement ratios (0, 50, and 100%) of carbon fiber reinforced plastics (CFRP) were selected to improve the mechanical properties of recycled brick concrete in this study. Utilizing axial compression test, X-ray diffractometer analysis, the evolution of parameters such as compressive strength, peak stress, and elastic modulus of reclaimed concrete were analyzed. The reclaimed brick concrete’ stress distribution and damage mechanism were revealed. The aggregate internal failure and CFRP reinforcement effect mechanism are discussed. The finite element model of red brick concrete reinforced by CFRP under uniaxial compression is established. The constitutive model for CFRP-reinforced recycled brick concrete is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews on Advanced Materials Science
Reviews on Advanced Materials Science 工程技术-材料科学:综合
CiteScore
5.10
自引率
11.10%
发文量
43
审稿时长
3.5 months
期刊介绍: Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信