{"title":"具有结构化弹性电介质层的高灵敏度柔性电容式压力传感器","authors":"Gaurav Rawal, Animangsu Ghatak","doi":"10.1088/1361-6439/ad1e35","DOIUrl":null,"url":null,"abstract":"Sensitive yet stable, robust yet flexible and accurate yet energy efficient pressure sensors are required for variety of purposes. While a large variety of designs and dielectric materials have been explored for this purpose, there is still need of a flexible pressure sensor that will allow easy scale up and inexpensive fabrication. To this end, we have presented here the design of a flexible capacitive pressure sensor using copper coated paper as flexible electrodes and soft Ecoflex layers decorated with cylindrical micro-pillars as the dielectric. While microscopic construct of the sensor allows its easy manufacturability, softness of the layer imparts sensitivity to it. In contrast to many conventional sensors, this design yields sensitivity as high as ∼5 kPa<sup>−1</sup> at pressure <1 kPa and somewhat smaller sensitivity as pressure exceeds 1 kPa. We have varied systematically pillar diameter, skin thickness of dielectric layer and pitch of the pillar array to optimise the design and demonstrate its easy tunability. We have presented a model based on buckling of the pillars to predict the response of the sensor. We have explored also a specific design that minimises the hysteresis.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"64 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive flexible capacitive pressure sensor with structured elastomeric dielectric layers\",\"authors\":\"Gaurav Rawal, Animangsu Ghatak\",\"doi\":\"10.1088/1361-6439/ad1e35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensitive yet stable, robust yet flexible and accurate yet energy efficient pressure sensors are required for variety of purposes. While a large variety of designs and dielectric materials have been explored for this purpose, there is still need of a flexible pressure sensor that will allow easy scale up and inexpensive fabrication. To this end, we have presented here the design of a flexible capacitive pressure sensor using copper coated paper as flexible electrodes and soft Ecoflex layers decorated with cylindrical micro-pillars as the dielectric. While microscopic construct of the sensor allows its easy manufacturability, softness of the layer imparts sensitivity to it. In contrast to many conventional sensors, this design yields sensitivity as high as ∼5 kPa<sup>−1</sup> at pressure <1 kPa and somewhat smaller sensitivity as pressure exceeds 1 kPa. We have varied systematically pillar diameter, skin thickness of dielectric layer and pitch of the pillar array to optimise the design and demonstrate its easy tunability. We have presented a model based on buckling of the pillars to predict the response of the sensor. We have explored also a specific design that minimises the hysteresis.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad1e35\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad1e35","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Sensitive yet stable, robust yet flexible and accurate yet energy efficient pressure sensors are required for variety of purposes. While a large variety of designs and dielectric materials have been explored for this purpose, there is still need of a flexible pressure sensor that will allow easy scale up and inexpensive fabrication. To this end, we have presented here the design of a flexible capacitive pressure sensor using copper coated paper as flexible electrodes and soft Ecoflex layers decorated with cylindrical micro-pillars as the dielectric. While microscopic construct of the sensor allows its easy manufacturability, softness of the layer imparts sensitivity to it. In contrast to many conventional sensors, this design yields sensitivity as high as ∼5 kPa−1 at pressure <1 kPa and somewhat smaller sensitivity as pressure exceeds 1 kPa. We have varied systematically pillar diameter, skin thickness of dielectric layer and pitch of the pillar array to optimise the design and demonstrate its easy tunability. We have presented a model based on buckling of the pillars to predict the response of the sensor. We have explored also a specific design that minimises the hysteresis.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.