周期域中可压缩向列液晶非等温模型时周期解的存在性和唯一性

IF 1.2 4区 数学 Q1 MATHEMATICS
Shuang Chen, Shanshan Guo, Qiuju Xu
{"title":"周期域中可压缩向列液晶非等温模型时周期解的存在性和唯一性","authors":"Shuang Chen, Shanshan Guo, Qiuju Xu","doi":"10.1007/s10473-024-0310-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain. Under some smallness and structural assumptions imposed on the time-periodic force, we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory. We also prove a uniqueness result via energy estimates.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"10 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence and uniqueness of time-periodic solutions to the non-isothermal model for compressible nematic liquid crystals in a periodic domain\",\"authors\":\"Shuang Chen, Shanshan Guo, Qiuju Xu\",\"doi\":\"10.1007/s10473-024-0310-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain. Under some smallness and structural assumptions imposed on the time-periodic force, we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory. We also prove a uniqueness result via energy estimates.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0310-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0310-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注周期域中可压缩向列液晶流的三维非等温模型。在对时间周期力施加的一些微小性和结构性假设下,我们利用正则化近似方案和拓扑度理论建立了系统的时间周期解的存在性。我们还通过能量估计证明了唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The existence and uniqueness of time-periodic solutions to the non-isothermal model for compressible nematic liquid crystals in a periodic domain

In this paper, we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain. Under some smallness and structural assumptions imposed on the time-periodic force, we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory. We also prove a uniqueness result via energy estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信