{"title":"强伪凸域哈代空间上的大汉克尔算子","authors":"","doi":"10.1007/s10473-024-0301-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this article, we investigate the (big) Hankel operator <em>H</em><sub><em>f</em></sub> on the Hardy spaces of bounded strongly pseudoconvex domains Ω in ℂ<sup><em>n</em></sup>. We observe that <em>H</em><sub><em>f</em></sub> is bounded on <em>H</em><sup><em>p</em></sup> (Ω) (1 < p < ∞) if <em>f</em> belongs to BMO and we obtain some characterizations for <em>H</em><sub><em>f</em></sub> on <em>H</em><sup>2</sup> (Ω) of other pseudoconvex domains. In these arguments, Amar’s <em>L</em><sup><em>p</em></sup>-estimations and Berndtsson’s <em>L</em><sup>2</sup>-estimations for solutions of the <span> <span>\\({{\\bar \\partial }_b}\\)</span> </span>-equation play a crucial role. In addition, we solve Gleason’s problem for Hardy spaces <em>H</em><sup><em>p</em></sup>(Ω) (1 ≤ p ≤ ∞) of bounded strongly pseudoconvex domains.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"128 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big Hankel operators on Hardy spaces of strongly pseudoconvex domains\",\"authors\":\"\",\"doi\":\"10.1007/s10473-024-0301-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this article, we investigate the (big) Hankel operator <em>H</em><sub><em>f</em></sub> on the Hardy spaces of bounded strongly pseudoconvex domains Ω in ℂ<sup><em>n</em></sup>. We observe that <em>H</em><sub><em>f</em></sub> is bounded on <em>H</em><sup><em>p</em></sup> (Ω) (1 < p < ∞) if <em>f</em> belongs to BMO and we obtain some characterizations for <em>H</em><sub><em>f</em></sub> on <em>H</em><sup>2</sup> (Ω) of other pseudoconvex domains. In these arguments, Amar’s <em>L</em><sup><em>p</em></sup>-estimations and Berndtsson’s <em>L</em><sup>2</sup>-estimations for solutions of the <span> <span>\\\\({{\\\\bar \\\\partial }_b}\\\\)</span> </span>-equation play a crucial role. In addition, we solve Gleason’s problem for Hardy spaces <em>H</em><sup><em>p</em></sup>(Ω) (1 ≤ p ≤ ∞) of bounded strongly pseudoconvex domains.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0301-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0301-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 本文研究ℂn 中有界强伪凸域 Ω 的哈代空间上的(大)汉克尔算子 Hf。我们观察到,如果 f 属于 BMO,则 Hf 在 Hp (Ω) (1 < p < ∞) 上是有界的。在这些论证中,针对 \({{\bar \partial }_b}\) -方程的解,Amar 的 Lp-estimations 和 Berndtsson 的 L2-estimations 起到了至关重要的作用。此外,我们还解决了有界强伪凸域的哈代空间 Hp(Ω) (1 ≤ p ≤ ∞) 的格里森问题。
Big Hankel operators on Hardy spaces of strongly pseudoconvex domains
Abstract
In this article, we investigate the (big) Hankel operator Hf on the Hardy spaces of bounded strongly pseudoconvex domains Ω in ℂn. We observe that Hf is bounded on Hp (Ω) (1 < p < ∞) if f belongs to BMO and we obtain some characterizations for Hf on H2 (Ω) of other pseudoconvex domains. In these arguments, Amar’s Lp-estimations and Berndtsson’s L2-estimations for solutions of the \({{\bar \partial }_b}\)-equation play a crucial role. In addition, we solve Gleason’s problem for Hardy spaces Hp(Ω) (1 ≤ p ≤ ∞) of bounded strongly pseudoconvex domains.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.