{"title":"具有非线性阻尼的三维准线性双曲方程的最佳大时间行为","authors":"Han Wang, Yinghui Zhang","doi":"10.1007/s10473-024-0317-6","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping. The main novelty of this paper is two-fold. First, we prove the optimal decay rates of the second and third order spatial derivatives of the solution, which are the same as those of the heat equation, and in particular, are faster than ones of previous related works. Second, for well-chosen initial data, we also show that the lower optimal <i>L</i><sup>2</sup> convergence rate of the <i>k</i> (∈ [0, 3])-order spatial derivatives of the solution is <span>\\({(1 + t)^{ - {{3 + 2k} \\over 4}}}\\)</span>. Therefore, our decay rates are optimal in this sense. The proofs are based on the Fourier splitting method, low-frequency and high-frequency decomposition, and delicate energy estimates.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"17 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimal large time behavior of 3D quasilinear hyperbolic equations with nonlinear damping\",\"authors\":\"Han Wang, Yinghui Zhang\",\"doi\":\"10.1007/s10473-024-0317-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping. The main novelty of this paper is two-fold. First, we prove the optimal decay rates of the second and third order spatial derivatives of the solution, which are the same as those of the heat equation, and in particular, are faster than ones of previous related works. Second, for well-chosen initial data, we also show that the lower optimal <i>L</i><sup>2</sup> convergence rate of the <i>k</i> (∈ [0, 3])-order spatial derivatives of the solution is <span>\\\\({(1 + t)^{ - {{3 + 2k} \\\\over 4}}}\\\\)</span>. Therefore, our decay rates are optimal in this sense. The proofs are based on the Fourier splitting method, low-frequency and high-frequency decomposition, and delicate energy estimates.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0317-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0317-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The optimal large time behavior of 3D quasilinear hyperbolic equations with nonlinear damping
We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping. The main novelty of this paper is two-fold. First, we prove the optimal decay rates of the second and third order spatial derivatives of the solution, which are the same as those of the heat equation, and in particular, are faster than ones of previous related works. Second, for well-chosen initial data, we also show that the lower optimal L2 convergence rate of the k (∈ [0, 3])-order spatial derivatives of the solution is \({(1 + t)^{ - {{3 + 2k} \over 4}}}\). Therefore, our decay rates are optimal in this sense. The proofs are based on the Fourier splitting method, low-frequency and high-frequency decomposition, and delicate energy estimates.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.