具有双临界增长的分数薛定谔-泊松系统归一化解的多重性

IF 1.2 4区 数学 Q1 MATHEMATICS
Yuxi Meng, Xiaoming He
{"title":"具有双临界增长的分数薛定谔-泊松系统归一化解的多重性","authors":"Yuxi Meng, Xiaoming He","doi":"10.1007/s10473-024-0313-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with solutions to the fractional Schrödinger-Poisson system </p><span>$$\\left\\{ {\\matrix{{{{( - \\Delta )}^s}u - \\phi |u{|^{2_s^ * - 3}}u = \\lambda u + \\mu |u{|^{q - 2}}u + |u{|^{2_s^ * - 2}}u,} \\hfill &amp; {x \\in {\\mathbb{R}^3},} \\hfill \\cr {{{( - \\Delta )}^s}\\phi = |u{|^{2_s^ * - 1}},} \\hfill &amp; {x \\in {\\mathbb{R}^3},} \\hfill \\cr } } \\right.$$</span><p> with prescribed mass <span>\\(\\int_{{\\mathbb{R}^3}} {|u{|^2}{\\rm{d}}x = {a^2}} \\)</span>, where <i>a</i> &gt; 0 is a prescribed number, <i>μ</i> &gt; 0 is a paremeter, <i>s</i> ∈ (0, 1), 2 &lt; <i>q</i> &lt; 2*<sub><i>s</i></sub>, and <span>\\(2_s^ * = {6 \\over {3 - 2s}}\\)</span> is the fractional critical Sobolev exponent. In the <i>L</i><sup>2</sup>-subcritical case, we show the existence of multiple normalized solutions by using the genus theory and the truncation technique; in the <i>L</i><sup>2</sup>-supercritical case, we obtain a couple of normalized solutions by developing a fiber map. Under both cases, to recover the loss of compactness of the energy functional caused by the doubly critical growth, we need to adopt the concentration-compactness principle. Our results complement and improve upon some existing studies on the fractional Schrödinger-Poisson system with a nonlocal critical term.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity of normalized solutions for the fractional Schrödinger-Poisson system with doubly critical growth\",\"authors\":\"Yuxi Meng, Xiaoming He\",\"doi\":\"10.1007/s10473-024-0313-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with solutions to the fractional Schrödinger-Poisson system </p><span>$$\\\\left\\\\{ {\\\\matrix{{{{( - \\\\Delta )}^s}u - \\\\phi |u{|^{2_s^ * - 3}}u = \\\\lambda u + \\\\mu |u{|^{q - 2}}u + |u{|^{2_s^ * - 2}}u,} \\\\hfill &amp; {x \\\\in {\\\\mathbb{R}^3},} \\\\hfill \\\\cr {{{( - \\\\Delta )}^s}\\\\phi = |u{|^{2_s^ * - 1}},} \\\\hfill &amp; {x \\\\in {\\\\mathbb{R}^3},} \\\\hfill \\\\cr } } \\\\right.$$</span><p> with prescribed mass <span>\\\\(\\\\int_{{\\\\mathbb{R}^3}} {|u{|^2}{\\\\rm{d}}x = {a^2}} \\\\)</span>, where <i>a</i> &gt; 0 is a prescribed number, <i>μ</i> &gt; 0 is a paremeter, <i>s</i> ∈ (0, 1), 2 &lt; <i>q</i> &lt; 2*<sub><i>s</i></sub>, and <span>\\\\(2_s^ * = {6 \\\\over {3 - 2s}}\\\\)</span> is the fractional critical Sobolev exponent. In the <i>L</i><sup>2</sup>-subcritical case, we show the existence of multiple normalized solutions by using the genus theory and the truncation technique; in the <i>L</i><sup>2</sup>-supercritical case, we obtain a couple of normalized solutions by developing a fiber map. Under both cases, to recover the loss of compactness of the energy functional caused by the doubly critical growth, we need to adopt the concentration-compactness principle. Our results complement and improve upon some existing studies on the fractional Schrödinger-Poisson system with a nonlocal critical term.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0313-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0313-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注分数薛定谔-泊松系统 $$\left\{ {\matrix{{{{( - \Delta )}^s}u - \phi |u{|^{2_s^ * - 3}}u = \lambda u + \mu |u{|^{q - 2}}u + |u{|^{2_s^ * - 2}}u,} \hfill &;{x \in {\mathbb{R}^3},} \hfill \cr {{( - \Delta )}^s}\phi = |u{|^{2_s^ * - 1}},} \hfill & {x \in {\mathbb{R}^3},} \hfill \cr } }}\right.$$ with prescribed mass \(\int_{\mathbb{R}^3}} {|u{|^2}{\rm{d}}x = {a^2}}\), where a > 0 is a prescribed number, μ >;0 是一个参数,s ∈ (0, 1),2 < q < 2*s,\(2_s^ * = {6 \over {3 - 2s}}) 是分数临界索波列夫指数。在 L2 次临界情况下,我们利用属理论和截断技术证明了多个归一化解的存在;在 L2 超临界情况下,我们通过发展纤维映射得到了几个归一化解。在这两种情况下,为了恢复双临界增长造成的能量函数的紧凑性损失,我们需要采用集中-紧凑性原理。我们的结果补充并改进了现有的一些关于带有非局部临界项的分数薛定谔-泊松系统的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity of normalized solutions for the fractional Schrödinger-Poisson system with doubly critical growth

In this paper, we are concerned with solutions to the fractional Schrödinger-Poisson system

$$\left\{ {\matrix{{{{( - \Delta )}^s}u - \phi |u{|^{2_s^ * - 3}}u = \lambda u + \mu |u{|^{q - 2}}u + |u{|^{2_s^ * - 2}}u,} \hfill & {x \in {\mathbb{R}^3},} \hfill \cr {{{( - \Delta )}^s}\phi = |u{|^{2_s^ * - 1}},} \hfill & {x \in {\mathbb{R}^3},} \hfill \cr } } \right.$$

with prescribed mass \(\int_{{\mathbb{R}^3}} {|u{|^2}{\rm{d}}x = {a^2}} \), where a > 0 is a prescribed number, μ > 0 is a paremeter, s ∈ (0, 1), 2 < q < 2*s, and \(2_s^ * = {6 \over {3 - 2s}}\) is the fractional critical Sobolev exponent. In the L2-subcritical case, we show the existence of multiple normalized solutions by using the genus theory and the truncation technique; in the L2-supercritical case, we obtain a couple of normalized solutions by developing a fiber map. Under both cases, to recover the loss of compactness of the energy functional caused by the doubly critical growth, we need to adopt the concentration-compactness principle. Our results complement and improve upon some existing studies on the fractional Schrödinger-Poisson system with a nonlocal critical term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信