{"title":"癌症抗药性生物机制的数学建模和分岔分析","authors":"Kangbo Bao, Guizhen Liang, Tianhai Tian, Xinan Zhang","doi":"10.1007/s10473-024-0321-x","DOIUrl":null,"url":null,"abstract":"<p>Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases. It has also been demonstrated to be related to cancer heterogeneity, which promotes the emergence of treatment-refractory cancer cell populations. Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system, we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting. We analyze the local geometric properties of the equilibria of the model. Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population. Moreover, the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength. Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"31 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling and bifurcation analysis for a biological mechanism of cancer drug resistance\",\"authors\":\"Kangbo Bao, Guizhen Liang, Tianhai Tian, Xinan Zhang\",\"doi\":\"10.1007/s10473-024-0321-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases. It has also been demonstrated to be related to cancer heterogeneity, which promotes the emergence of treatment-refractory cancer cell populations. Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system, we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting. We analyze the local geometric properties of the equilibria of the model. Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population. Moreover, the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength. Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0321-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0321-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Mathematical modeling and bifurcation analysis for a biological mechanism of cancer drug resistance
Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases. It has also been demonstrated to be related to cancer heterogeneity, which promotes the emergence of treatment-refractory cancer cell populations. Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system, we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting. We analyze the local geometric properties of the equilibria of the model. Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population. Moreover, the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength. Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.