{"title":"关于近似相等距的普遍不等式","authors":"Duanxu Dai, Haixin Que, Longfa Sun, Bentuo Zheng","doi":"10.1007/s10473-024-0303-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> and <i>Y</i> be two normed spaces. Let <span>\\({\\cal U}\\)</span> be a non-principal ultrafilter on ℕ. Let g: <i>X</i> → <i>Y</i> be a standard <i>ε</i>-phase isometry for some <i>ε</i> ≥ 0, i.e., <i>g</i>(0) = 0, and for all <i>u, v ϵ X</i>, </p><span>$$|\\,\\,|\\,||g(u) + g(v)|| \\pm ||g(u) - g(v)||\\,| - |\\,||u + v|| \\pm ||u - v||\\,|\\,\\,|\\, \\le \\varepsilon .$$</span><p>The mapping <i>g</i> is said to be a phase isometry provided that <i>ε</i> = 0. In this paper, we show the following universal inequality of <i>g</i>: for each <span>\\({u^ * } \\in {w^ * } - \\exp \\,\\,||{u^ * }||{B_{{X^ * }}}\\)</span>, there exist a phase function <span>\\({\\sigma _{{u^ * }}}:X \\to \\{ - 1,1\\} \\)</span> and <i>φ</i> ϵ <i>Y</i>* with <span>\\(||\\varphi || = ||{u^ * }|| \\equiv \\alpha \\)</span> satisfying that </p><span>$$|\\left\\langle {{u^ * },u} \\right\\rangle - {\\sigma _{{u^ * }}}(u)\\left\\langle {\\varphi ,g(u)} \\right\\rangle | \\le {5 \\over 2}\\varepsilon \\alpha ,\\,\\,\\,{\\rm{for}}\\,{\\rm{all}}\\,u \\in X.$$</span><p>In particular, let <i>X</i> be a smooth Banach space. Then we show the following: (1) the universal inequality holds for all <i>u</i>* ∈ <i>X</i>*; (2) the constant <span>\\({5 \\over 2}\\)</span> can be reduced to <span>\\({3 \\over 2}\\)</span> provided that <i>Y</i>* is strictly convex; (3) the existence of such a g implies the existence of a phase isometry Θ: <i>X</i> → <i>Y</i> such that <span>\\(\\Theta (u) = \\mathop {\\lim }\\limits_{n,{\\cal U}} {{g(nu)} \\over n}\\)</span> provided that <i>Y</i>** has the <i>w</i>*-Kadec-Klee property (for example, <i>Y</i> is both reflexive and locally uniformly convex).</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"10 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a universal inequality for approximate phase isometries\",\"authors\":\"Duanxu Dai, Haixin Que, Longfa Sun, Bentuo Zheng\",\"doi\":\"10.1007/s10473-024-0303-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> and <i>Y</i> be two normed spaces. Let <span>\\\\({\\\\cal U}\\\\)</span> be a non-principal ultrafilter on ℕ. Let g: <i>X</i> → <i>Y</i> be a standard <i>ε</i>-phase isometry for some <i>ε</i> ≥ 0, i.e., <i>g</i>(0) = 0, and for all <i>u, v ϵ X</i>, </p><span>$$|\\\\,\\\\,|\\\\,||g(u) + g(v)|| \\\\pm ||g(u) - g(v)||\\\\,| - |\\\\,||u + v|| \\\\pm ||u - v||\\\\,|\\\\,\\\\,|\\\\, \\\\le \\\\varepsilon .$$</span><p>The mapping <i>g</i> is said to be a phase isometry provided that <i>ε</i> = 0. In this paper, we show the following universal inequality of <i>g</i>: for each <span>\\\\({u^ * } \\\\in {w^ * } - \\\\exp \\\\,\\\\,||{u^ * }||{B_{{X^ * }}}\\\\)</span>, there exist a phase function <span>\\\\({\\\\sigma _{{u^ * }}}:X \\\\to \\\\{ - 1,1\\\\} \\\\)</span> and <i>φ</i> ϵ <i>Y</i>* with <span>\\\\(||\\\\varphi || = ||{u^ * }|| \\\\equiv \\\\alpha \\\\)</span> satisfying that </p><span>$$|\\\\left\\\\langle {{u^ * },u} \\\\right\\\\rangle - {\\\\sigma _{{u^ * }}}(u)\\\\left\\\\langle {\\\\varphi ,g(u)} \\\\right\\\\rangle | \\\\le {5 \\\\over 2}\\\\varepsilon \\\\alpha ,\\\\,\\\\,\\\\,{\\\\rm{for}}\\\\,{\\\\rm{all}}\\\\,u \\\\in X.$$</span><p>In particular, let <i>X</i> be a smooth Banach space. Then we show the following: (1) the universal inequality holds for all <i>u</i>* ∈ <i>X</i>*; (2) the constant <span>\\\\({5 \\\\over 2}\\\\)</span> can be reduced to <span>\\\\({3 \\\\over 2}\\\\)</span> provided that <i>Y</i>* is strictly convex; (3) the existence of such a g implies the existence of a phase isometry Θ: <i>X</i> → <i>Y</i> such that <span>\\\\(\\\\Theta (u) = \\\\mathop {\\\\lim }\\\\limits_{n,{\\\\cal U}} {{g(nu)} \\\\over n}\\\\)</span> provided that <i>Y</i>** has the <i>w</i>*-Kadec-Klee property (for example, <i>Y</i> is both reflexive and locally uniformly convex).</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0303-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0303-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a universal inequality for approximate phase isometries
Let X and Y be two normed spaces. Let \({\cal U}\) be a non-principal ultrafilter on ℕ. Let g: X → Y be a standard ε-phase isometry for some ε ≥ 0, i.e., g(0) = 0, and for all u, v ϵ X,
The mapping g is said to be a phase isometry provided that ε = 0. In this paper, we show the following universal inequality of g: for each \({u^ * } \in {w^ * } - \exp \,\,||{u^ * }||{B_{{X^ * }}}\), there exist a phase function \({\sigma _{{u^ * }}}:X \to \{ - 1,1\} \) and φ ϵ Y* with \(||\varphi || = ||{u^ * }|| \equiv \alpha \) satisfying that
In particular, let X be a smooth Banach space. Then we show the following: (1) the universal inequality holds for all u* ∈ X*; (2) the constant \({5 \over 2}\) can be reduced to \({3 \over 2}\) provided that Y* is strictly convex; (3) the existence of such a g implies the existence of a phase isometry Θ: X → Y such that \(\Theta (u) = \mathop {\lim }\limits_{n,{\cal U}} {{g(nu)} \over n}\) provided that Y** has the w*-Kadec-Klee property (for example, Y is both reflexive and locally uniformly convex).
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.