非等温理想气体系统强解的全局存在性

IF 1.2 4区 数学 Q1 MATHEMATICS
{"title":"非等温理想气体系统强解的全局存在性","authors":"","doi":"10.1007/s10473-024-0306-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We investigate the global existence of strong solutions to a non-isothermal ideal gas model derived from an energy variational approach. We first show the global well-posedness in the Sobolev space <strong><em>H</em></strong><sup>2</sup> (ℝ<sup>3</sup>) for solutions near equilibrium through iterated energy-type bounds and a continuity argument. We then prove the global well-posedness in the critical Besov space <span> <span>\\(\\dot{\\boldsymbol{B}}_{\\boldsymbol{2,1}}^{\\boldsymbol{3/2}}\\)</span> </span> by showing that the linearized operator is a contraction mapping under the right circumstances.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The global existence of strong solutions for a non-isothermal ideal gas system\",\"authors\":\"\",\"doi\":\"10.1007/s10473-024-0306-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We investigate the global existence of strong solutions to a non-isothermal ideal gas model derived from an energy variational approach. We first show the global well-posedness in the Sobolev space <strong><em>H</em></strong><sup>2</sup> (ℝ<sup>3</sup>) for solutions near equilibrium through iterated energy-type bounds and a continuity argument. We then prove the global well-posedness in the critical Besov space <span> <span>\\\\(\\\\dot{\\\\boldsymbol{B}}_{\\\\boldsymbol{2,1}}^{\\\\boldsymbol{3/2}}\\\\)</span> </span> by showing that the linearized operator is a contraction mapping under the right circumstances.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0306-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0306-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了从能量变分法导出的非等温理想气体模型强解的全局存在性。首先,我们通过迭代能量型约束和连续性论证,证明了在 Sobolev 空间 H2 (ℝ3) 中接近平衡解的全局好求解性。然后,我们通过证明线性化算子在适当情况下是一个收缩映射,证明了临界贝索夫空间 \(\dot{\boldsymbol{B}}_{\boldsymbol{2,1}}^{\boldsymbol{3/2}}\)中的全局可求性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The global existence of strong solutions for a non-isothermal ideal gas system

Abstract

We investigate the global existence of strong solutions to a non-isothermal ideal gas model derived from an energy variational approach. We first show the global well-posedness in the Sobolev space H2 (ℝ3) for solutions near equilibrium through iterated energy-type bounds and a continuity argument. We then prove the global well-posedness in the critical Besov space \(\dot{\boldsymbol{B}}_{\boldsymbol{2,1}}^{\boldsymbol{3/2}}\) by showing that the linearized operator is a contraction mapping under the right circumstances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信