一类三阶非线性延迟动态方程的渐近行为和振荡

IF 1.2 4区 数学 Q1 MATHEMATICS
Xianyong Huang, Xunhuan Deng, Qiru Wang
{"title":"一类三阶非线性延迟动态方程的渐近行为和振荡","authors":"Xianyong Huang, Xunhuan Deng, Qiru Wang","doi":"10.1007/s10473-024-0309-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of third-order nonlinear delay dynamic equations. First, we establish a Kiguradze-type lemma and some useful estimates. Second, we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero. Third, we obtain new oscillation criteria by employing the Pötzsche chain rule. Then, using the generalized Riccati transformation technique and averaging method, we establish the Philos-type oscillation criteria. Surprisingly, the integral value of the Philos-type oscillation criteria, which guarantees that all unbounded solutions oscillate, is greater than <i>θ</i><sub>4</sub>(<i>t</i><sub>1</sub>, <i>T</i>). The results of Theorem 3.5 and Remark 3.6 are novel. Finally, we offer four examples to illustrate our results.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotic behavior and oscillation for a class of third-order nonlinear delay dynamic equations\",\"authors\":\"Xianyong Huang, Xunhuan Deng, Qiru Wang\",\"doi\":\"10.1007/s10473-024-0309-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a class of third-order nonlinear delay dynamic equations. First, we establish a Kiguradze-type lemma and some useful estimates. Second, we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero. Third, we obtain new oscillation criteria by employing the Pötzsche chain rule. Then, using the generalized Riccati transformation technique and averaging method, we establish the Philos-type oscillation criteria. Surprisingly, the integral value of the Philos-type oscillation criteria, which guarantees that all unbounded solutions oscillate, is greater than <i>θ</i><sub>4</sub>(<i>t</i><sub>1</sub>, <i>T</i>). The results of Theorem 3.5 and Remark 3.6 are novel. Finally, we offer four examples to illustrate our results.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0309-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0309-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一类三阶非线性延迟动态方程。首先,我们建立了一个 Kiguradze 类型的 Lemma 和一些有用的估计。其次,我们给出了最终正解存在的充分必要条件,这些正解具有上限且趋于零。第三,我们利用 Pötzsche 链式法则获得了新的振荡标准。然后,利用广义里卡提变换技术和平均法,我们建立了 Philos 型振荡准则。令人惊讶的是,菲洛斯型振荡准则的积分值大于θ4(t1, T),而菲洛斯型振荡准则保证了所有无界解都会振荡。定理 3.5 和注释 3.6 的结果很新颖。最后,我们举四个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The asymptotic behavior and oscillation for a class of third-order nonlinear delay dynamic equations

In this paper, we consider a class of third-order nonlinear delay dynamic equations. First, we establish a Kiguradze-type lemma and some useful estimates. Second, we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero. Third, we obtain new oscillation criteria by employing the Pötzsche chain rule. Then, using the generalized Riccati transformation technique and averaging method, we establish the Philos-type oscillation criteria. Surprisingly, the integral value of the Philos-type oscillation criteria, which guarantees that all unbounded solutions oscillate, is greater than θ4(t1, T). The results of Theorem 3.5 and Remark 3.6 are novel. Finally, we offer four examples to illustrate our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信