具有线性自斥漂移的分数奥恩斯坦-乌伦贝克过程的长期行为

IF 1.2 4区 数学 Q1 MATHEMATICS
Xiaoyu Xia, Litan Yan, Qing Yang
{"title":"具有线性自斥漂移的分数奥恩斯坦-乌伦贝克过程的长期行为","authors":"Xiaoyu Xia, Litan Yan, Qing Yang","doi":"10.1007/s10473-024-0216-x","DOIUrl":null,"url":null,"abstract":"<p>Let <i>B</i><sup><i>H</i></sup> be a fractional Brownian motion with Hurst index <span>\\({1 \\over 2} \\le H &lt; 1\\)</span>. In this paper, we consider the equation (called the Ornstein-Uhlenbeck process with a linear self-repelling drift) </p><span>$${\\rm{d}}X_t^H = dB_t^H + \\sigma X_t^H{\\rm{d}}t + \\nu {\\rm{d}}t - \\theta \\left( {\\int_0^t {(X_{^t}^H - X_s^H){\\rm{d}}s} } \\right){\\rm{d}}t,$$</span><p> where θ &lt; 0, <i>σ, v</i> ∈ ℝ. The process is an analogue of self-attracting diffusion (Cranston, Le Jan. Math Ann, 1995, 303: 87–93). Our main aim is to study the large time behaviors of the process. We show that the solution <i>X</i><sup><i>H</i></sup> diverges to infinity as t tends to infinity, and obtain the speed at which the process <i>X</i><sup><i>H</i></sup> diverges to infinity as <i>t</i> tends to infinity.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The long time behavior of the fractional Ornstein-Uhlenbeck process with linear self-repelling drift\",\"authors\":\"Xiaoyu Xia, Litan Yan, Qing Yang\",\"doi\":\"10.1007/s10473-024-0216-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>B</i><sup><i>H</i></sup> be a fractional Brownian motion with Hurst index <span>\\\\({1 \\\\over 2} \\\\le H &lt; 1\\\\)</span>. In this paper, we consider the equation (called the Ornstein-Uhlenbeck process with a linear self-repelling drift) </p><span>$${\\\\rm{d}}X_t^H = dB_t^H + \\\\sigma X_t^H{\\\\rm{d}}t + \\\\nu {\\\\rm{d}}t - \\\\theta \\\\left( {\\\\int_0^t {(X_{^t}^H - X_s^H){\\\\rm{d}}s} } \\\\right){\\\\rm{d}}t,$$</span><p> where θ &lt; 0, <i>σ, v</i> ∈ ℝ. The process is an analogue of self-attracting diffusion (Cranston, Le Jan. Math Ann, 1995, 303: 87–93). Our main aim is to study the large time behaviors of the process. We show that the solution <i>X</i><sup><i>H</i></sup> diverges to infinity as t tends to infinity, and obtain the speed at which the process <i>X</i><sup><i>H</i></sup> diverges to infinity as <i>t</i> tends to infinity.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0216-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0216-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 BH 是一个分数布朗运动,其赫斯特指数为({1 \over 2} \le H < 1\ )。在本文中,我们考虑的方程(称为具有线性自斥漂移的 Ornstein-Uhlenbeck 过程)为 $${\rm{d}}X_t^H = dB_t^H + \sigma X_t^H{\rm{d}}t + \nu {\rm{d}}t - \theta \left( {\int_0^t {(X_{^t}^H - X_s^H){\rm{d}}s}}.}\right){\rm{d}}t,$$ 其中 θ < 0, σ, v∈ ℝ。这个过程类似于自吸引扩散(Cranston, Le Jan. Math Ann, 1995, 303: 87-93)。我们的主要目的是研究该过程的大时间行为。我们证明了解 XH 在 t 趋于无穷大时发散到无穷大,并得到了过程 XH 在 t 趋于无穷大时发散到无穷大的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The long time behavior of the fractional Ornstein-Uhlenbeck process with linear self-repelling drift

Let BH be a fractional Brownian motion with Hurst index \({1 \over 2} \le H < 1\). In this paper, we consider the equation (called the Ornstein-Uhlenbeck process with a linear self-repelling drift)

$${\rm{d}}X_t^H = dB_t^H + \sigma X_t^H{\rm{d}}t + \nu {\rm{d}}t - \theta \left( {\int_0^t {(X_{^t}^H - X_s^H){\rm{d}}s} } \right){\rm{d}}t,$$

where θ < 0, σ, v ∈ ℝ. The process is an analogue of self-attracting diffusion (Cranston, Le Jan. Math Ann, 1995, 303: 87–93). Our main aim is to study the large time behaviors of the process. We show that the solution XH diverges to infinity as t tends to infinity, and obtain the speed at which the process XH diverges to infinity as t tends to infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信