局部有限图上半线性抛物系统的炸毁条件

IF 1.2 4区 数学 Q1 MATHEMATICS
{"title":"局部有限图上半线性抛物系统的炸毁条件","authors":"","doi":"10.1007/s10473-024-0213-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition <em>CDE’</em>(<em>n</em>,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up conditions for a semilinear parabolic system on locally finite graphs\",\"authors\":\"\",\"doi\":\"10.1007/s10473-024-0213-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition <em>CDE’</em>(<em>n</em>,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0213-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0213-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了局部有限图上半线性抛物系统的炸毁现象。在曲率条件 CDE'(n,0)、度数为 m 的多项式体积增长、初始值和吸收项指数的一些适当假设下,我们证明了半线性抛物线系统的每个非负解都会在有限时间内炸毁。我们目前的工作扩展了 Lin 和 Wu(Calc Var Partial Differ Equ,2017,56:Art 102)以及 Wu(Rev R Acad Cien Serie A Mat,2021,115:Art 133)取得的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up conditions for a semilinear parabolic system on locally finite graphs

Abstract

In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信