具有化学排斥作用的 Lotka-Volterra 竞争模型的优化控制问题

IF 1.2 4区 数学 Q1 MATHEMATICS
Diana I. Hernández, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa
{"title":"具有化学排斥作用的 Lotka-Volterra 竞争模型的优化控制问题","authors":"Diana I. Hernández, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa","doi":"10.1007/s10473-024-0219-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ<sup>ℕ</sup>, <i>N</i> = 2, 3. This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism. We prove the existence and uniqueness of weak-strong solutions, and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem, where the control is acting on the chemical signal. Posteriorly, we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory. Finally, we propose a discrete approximation scheme of the optimality system based on the gradient method, which is validated with some computational experiments.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"35 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal control problem for a Lotka-Volterra competition model with chemo-repulsion\",\"authors\":\"Diana I. Hernández, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa\",\"doi\":\"10.1007/s10473-024-0219-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ<sup>ℕ</sup>, <i>N</i> = 2, 3. This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism. We prove the existence and uniqueness of weak-strong solutions, and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem, where the control is acting on the chemical signal. Posteriorly, we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory. Finally, we propose a discrete approximation scheme of the optimality system based on the gradient method, which is validated with some computational experiments.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0219-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0219-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个扩散洛特卡-伏特拉竞争模型的双线性最优控制问题,该模型在ℝℕ,N = 2,3 的有界域中具有化学排斥作用。该模型描述了两个物种的竞争,其中一个物种通过化学排斥机制避免与对手相遇。我们证明了弱-强解的存在性和唯一性,然后分析了相关双线性最优控制问题的全局最优解的存在性,其中控制作用于化学信号。之后,我们利用拉格朗日乘数理论推导出局部最优解的一阶最优条件。最后,我们提出了一种基于梯度法的优化系统离散近似方案,并通过一些计算实验进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal control problem for a Lotka-Volterra competition model with chemo-repulsion

In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ, N = 2, 3. This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism. We prove the existence and uniqueness of weak-strong solutions, and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem, where the control is acting on the chemical signal. Posteriorly, we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory. Finally, we propose a discrete approximation scheme of the optimality system based on the gradient method, which is validated with some computational experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信