{"title":"变分不等式的无在线规则强收敛惯性前向后向算法","authors":"Yonghong Yao, Abubakar Adamu, Yekini Shehu","doi":"10.1007/s10473-024-0210-3","DOIUrl":null,"url":null,"abstract":"<p>This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces. In our convergence analysis, we do not assume the on-line rule of the inertial parameters and the iterates, which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem. Consequently, our proof arguments are different from what is obtainable in the relevant literature. Finally, we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly convergent inertial forward-backward-forward algorithm without on-line rule for variational inequalities\",\"authors\":\"Yonghong Yao, Abubakar Adamu, Yekini Shehu\",\"doi\":\"10.1007/s10473-024-0210-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces. In our convergence analysis, we do not assume the on-line rule of the inertial parameters and the iterates, which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem. Consequently, our proof arguments are different from what is obtainable in the relevant literature. Finally, we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0210-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0210-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Strongly convergent inertial forward-backward-forward algorithm without on-line rule for variational inequalities
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces. In our convergence analysis, we do not assume the on-line rule of the inertial parameters and the iterates, which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem. Consequently, our proof arguments are different from what is obtainable in the relevant literature. Finally, we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.