在 "云到物 "连续体上为分布式深度神经网络推理提供功能服务

Altair Bueno, Bartolomé Rubio, Cristian Martín, Manuel Díaz
{"title":"在 \"云到物 \"连续体上为分布式深度神经网络推理提供功能服务","authors":"Altair Bueno, Bartolomé Rubio, Cristian Martín, Manuel Díaz","doi":"10.1002/spe.3318","DOIUrl":null,"url":null,"abstract":"The use of serverless computing has been gaining popularity in recent years as an alternative to traditional Cloud computing. We explore the usability and potential development benefits of three popular open-source serverless platforms in the context of IoT: OpenFaaS, Fission, and OpenWhisk. To address this we discuss our experience developing a serverless and low-latency Distributed Deep Neural Network (DDNN) application. Our findings indicate that these serverless platforms require significant resources to operate and are not ideal for constrained devices. In addition, we archived a 55% improvement compared to Kafka-ML's performance under load, a framework without dynamic scaling support, demonstrating the potential of serverless computing for low-latency applications.","PeriodicalId":21899,"journal":{"name":"Software: Practice and Experience","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functions as a service for distributed deep neural network inference over the cloud-to-things continuum\",\"authors\":\"Altair Bueno, Bartolomé Rubio, Cristian Martín, Manuel Díaz\",\"doi\":\"10.1002/spe.3318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of serverless computing has been gaining popularity in recent years as an alternative to traditional Cloud computing. We explore the usability and potential development benefits of three popular open-source serverless platforms in the context of IoT: OpenFaaS, Fission, and OpenWhisk. To address this we discuss our experience developing a serverless and low-latency Distributed Deep Neural Network (DDNN) application. Our findings indicate that these serverless platforms require significant resources to operate and are not ideal for constrained devices. In addition, we archived a 55% improvement compared to Kafka-ML's performance under load, a framework without dynamic scaling support, demonstrating the potential of serverless computing for low-latency applications.\",\"PeriodicalId\":21899,\"journal\":{\"name\":\"Software: Practice and Experience\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software: Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/spe.3318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spe.3318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为传统云计算的替代方案,无服务器计算的使用近年来越来越受欢迎。我们探讨了三种流行的开源无服务器平台在物联网背景下的可用性和潜在开发优势:OpenFaaS、Fission 和 OpenWhisk。为此,我们讨论了开发无服务器和低延迟分布式深度神经网络(DDNN)应用的经验。我们的研究结果表明,这些无服务器平台需要大量资源才能运行,对于受限设备来说并不理想。此外,与没有动态扩展支持的框架 Kafka-ML 相比,我们在负载下的性能提高了 55%,这证明了无服务器计算在低延迟应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functions as a service for distributed deep neural network inference over the cloud-to-things continuum
The use of serverless computing has been gaining popularity in recent years as an alternative to traditional Cloud computing. We explore the usability and potential development benefits of three popular open-source serverless platforms in the context of IoT: OpenFaaS, Fission, and OpenWhisk. To address this we discuss our experience developing a serverless and low-latency Distributed Deep Neural Network (DDNN) application. Our findings indicate that these serverless platforms require significant resources to operate and are not ideal for constrained devices. In addition, we archived a 55% improvement compared to Kafka-ML's performance under load, a framework without dynamic scaling support, demonstrating the potential of serverless computing for low-latency applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信