有限阿贝尔群作用的稳定轨道分离

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jameson Cahill, Andres Contreras, Andres Contreras Hip
{"title":"有限阿贝尔群作用的稳定轨道分离","authors":"Jameson Cahill, Andres Contreras, Andres Contreras Hip","doi":"10.1007/s00041-024-10069-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper we construct two new families of invariant maps that separate the orbits of the action of a finite Abelian group on a finite dimensional complex vector space. One of these families is Lipschitz continuous with respect to the quotient metric on the space of orbits, but involves computing large powers of the components of the vectors which can lead to instabilities. The other family avoids this issue by putting the powers only on the phase of the components, but in turn is not continuous. However, we show that they are Lipschitz continuous on the set of vectors with fixed support, so in particular they are Lipschitz on the set of vectors with no zero entries. Furthermore, the target dimension of these maps is small, i.e., linear in the original dimension.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Separation of Orbits for Finite Abelian Group Actions\",\"authors\":\"Jameson Cahill, Andres Contreras, Andres Contreras Hip\",\"doi\":\"10.1007/s00041-024-10069-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we construct two new families of invariant maps that separate the orbits of the action of a finite Abelian group on a finite dimensional complex vector space. One of these families is Lipschitz continuous with respect to the quotient metric on the space of orbits, but involves computing large powers of the components of the vectors which can lead to instabilities. The other family avoids this issue by putting the powers only on the phase of the components, but in turn is not continuous. However, we show that they are Lipschitz continuous on the set of vectors with fixed support, so in particular they are Lipschitz on the set of vectors with no zero entries. Furthermore, the target dimension of these maps is small, i.e., linear in the original dimension.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-024-10069-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10069-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了两个新的不变映射族,它们可以分离有限阿贝尔群在有限维复向量空间上的作用轨道。其中一个系列相对于轨道空间上的商度量是利普齐兹连续的,但涉及计算向量分量的大幂,这可能导致不稳定。另一个系列通过只计算分量相位的幂来避免这个问题,但反过来也不是连续的。然而,我们证明它们在具有固定支持的向量集合上是 Lipschitz 连续的,因此它们在没有零条目向量集合上尤其是 Lipschitz 连续的。此外,这些映射的目标维度很小,即与原始维度成线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable Separation of Orbits for Finite Abelian Group Actions

In this paper we construct two new families of invariant maps that separate the orbits of the action of a finite Abelian group on a finite dimensional complex vector space. One of these families is Lipschitz continuous with respect to the quotient metric on the space of orbits, but involves computing large powers of the components of the vectors which can lead to instabilities. The other family avoids this issue by putting the powers only on the phase of the components, but in turn is not continuous. However, we show that they are Lipschitz continuous on the set of vectors with fixed support, so in particular they are Lipschitz on the set of vectors with no zero entries. Furthermore, the target dimension of these maps is small, i.e., linear in the original dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信