支持$${mathbb {R}}^d$$ 球上的正定函数的图兰问题及其对偶问题

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Jean-Pierre Gabardo
{"title":"支持$${mathbb {R}}^d$$ 球上的正定函数的图兰问题及其对偶问题","authors":"Jean-Pierre Gabardo","doi":"10.1007/s00041-024-10068-0","DOIUrl":null,"url":null,"abstract":"<p>The Turán problem for an open ball of radius r centered at the origin in <span>\\({\\mathbb {R}}^d\\)</span> consists in computing the supremum of the integrals of positive definite functions compactly supported on that ball and taking the value 1 at the origin. Siegel proved, in the 1930s that this supremum is equal to <span>\\(2^{-d}\\)</span> mutiplied by the Lebesgue measure of the ball and is reached by a multiple of the self-convolution of the indicator function of the ball of radius <i>r</i>/2. Several proofs of this result are known and, in this paper, we will provide a new proof of it based on the notion of “dual Turán problem”, a related maximization problem involving positive definite distributions. We provide, in particular, an explicit construction of the Fourier transform of a maximizer for the dual Turán problem. This approach to the problem provides a direct link between certain aspects of the theory of frames in Fourier analysis and the Turán problem. In particular, as an intermediary step needed for our main result, we construct new families of Parseval frames, involving Bessel functions, on the interval [0, 1].</p>","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"17 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Turán Problem and Its Dual for Positive Definite Functions Supported on a Ball in $${\\\\mathbb {R}}^d$$\",\"authors\":\"Jean-Pierre Gabardo\",\"doi\":\"10.1007/s00041-024-10068-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Turán problem for an open ball of radius r centered at the origin in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span> consists in computing the supremum of the integrals of positive definite functions compactly supported on that ball and taking the value 1 at the origin. Siegel proved, in the 1930s that this supremum is equal to <span>\\\\(2^{-d}\\\\)</span> mutiplied by the Lebesgue measure of the ball and is reached by a multiple of the self-convolution of the indicator function of the ball of radius <i>r</i>/2. Several proofs of this result are known and, in this paper, we will provide a new proof of it based on the notion of “dual Turán problem”, a related maximization problem involving positive definite distributions. We provide, in particular, an explicit construction of the Fourier transform of a maximizer for the dual Turán problem. This approach to the problem provides a direct link between certain aspects of the theory of frames in Fourier analysis and the Turán problem. In particular, as an intermediary step needed for our main result, we construct new families of Parseval frames, involving Bessel functions, on the interval [0, 1].</p>\",\"PeriodicalId\":15993,\"journal\":{\"name\":\"Journal of Fourier Analysis and Applications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fourier Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-024-10068-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10068-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于以原点为中心的半径为 r 的开球,图兰问题包括计算紧凑支撑在该球上并在原点取值为 1 的正定函数积分的上确界。西格尔在 20 世纪 30 年代证明,这个上集等于 \(2^{-d}\)乘以球的 Lebesgue 度量,并通过半径为 r/2 的球的指示函数的自变量的倍数达到。我们特别提供了对偶图兰问题最大化的傅立叶变换的明确构造。这种解决问题的方法提供了傅立叶分析中框架理论的某些方面与图兰问题之间的直接联系。特别是,作为我们主要结果所需的中间步骤,我们在区间 [0, 1] 上构建了涉及贝塞尔函数的新帕塞瓦尔框架族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Turán Problem and Its Dual for Positive Definite Functions Supported on a Ball in $${\mathbb {R}}^d$$

The Turán problem for an open ball of radius r centered at the origin in \({\mathbb {R}}^d\) consists in computing the supremum of the integrals of positive definite functions compactly supported on that ball and taking the value 1 at the origin. Siegel proved, in the 1930s that this supremum is equal to \(2^{-d}\) mutiplied by the Lebesgue measure of the ball and is reached by a multiple of the self-convolution of the indicator function of the ball of radius r/2. Several proofs of this result are known and, in this paper, we will provide a new proof of it based on the notion of “dual Turán problem”, a related maximization problem involving positive definite distributions. We provide, in particular, an explicit construction of the Fourier transform of a maximizer for the dual Turán problem. This approach to the problem provides a direct link between certain aspects of the theory of frames in Fourier analysis and the Turán problem. In particular, as an intermediary step needed for our main result, we construct new families of Parseval frames, involving Bessel functions, on the interval [0, 1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
16.70%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics. TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers. Areas of applications include the following: antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信