{"title":"支持$${mathbb {R}}^d$$ 球上的正定函数的图兰问题及其对偶问题","authors":"Jean-Pierre Gabardo","doi":"10.1007/s00041-024-10068-0","DOIUrl":null,"url":null,"abstract":"<p>The Turán problem for an open ball of radius r centered at the origin in <span>\\({\\mathbb {R}}^d\\)</span> consists in computing the supremum of the integrals of positive definite functions compactly supported on that ball and taking the value 1 at the origin. Siegel proved, in the 1930s that this supremum is equal to <span>\\(2^{-d}\\)</span> mutiplied by the Lebesgue measure of the ball and is reached by a multiple of the self-convolution of the indicator function of the ball of radius <i>r</i>/2. Several proofs of this result are known and, in this paper, we will provide a new proof of it based on the notion of “dual Turán problem”, a related maximization problem involving positive definite distributions. We provide, in particular, an explicit construction of the Fourier transform of a maximizer for the dual Turán problem. This approach to the problem provides a direct link between certain aspects of the theory of frames in Fourier analysis and the Turán problem. In particular, as an intermediary step needed for our main result, we construct new families of Parseval frames, involving Bessel functions, on the interval [0, 1].</p>","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"17 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Turán Problem and Its Dual for Positive Definite Functions Supported on a Ball in $${\\\\mathbb {R}}^d$$\",\"authors\":\"Jean-Pierre Gabardo\",\"doi\":\"10.1007/s00041-024-10068-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Turán problem for an open ball of radius r centered at the origin in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span> consists in computing the supremum of the integrals of positive definite functions compactly supported on that ball and taking the value 1 at the origin. Siegel proved, in the 1930s that this supremum is equal to <span>\\\\(2^{-d}\\\\)</span> mutiplied by the Lebesgue measure of the ball and is reached by a multiple of the self-convolution of the indicator function of the ball of radius <i>r</i>/2. Several proofs of this result are known and, in this paper, we will provide a new proof of it based on the notion of “dual Turán problem”, a related maximization problem involving positive definite distributions. We provide, in particular, an explicit construction of the Fourier transform of a maximizer for the dual Turán problem. This approach to the problem provides a direct link between certain aspects of the theory of frames in Fourier analysis and the Turán problem. In particular, as an intermediary step needed for our main result, we construct new families of Parseval frames, involving Bessel functions, on the interval [0, 1].</p>\",\"PeriodicalId\":15993,\"journal\":{\"name\":\"Journal of Fourier Analysis and Applications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fourier Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-024-10068-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10068-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Turán Problem and Its Dual for Positive Definite Functions Supported on a Ball in $${\mathbb {R}}^d$$
The Turán problem for an open ball of radius r centered at the origin in \({\mathbb {R}}^d\) consists in computing the supremum of the integrals of positive definite functions compactly supported on that ball and taking the value 1 at the origin. Siegel proved, in the 1930s that this supremum is equal to \(2^{-d}\) mutiplied by the Lebesgue measure of the ball and is reached by a multiple of the self-convolution of the indicator function of the ball of radius r/2. Several proofs of this result are known and, in this paper, we will provide a new proof of it based on the notion of “dual Turán problem”, a related maximization problem involving positive definite distributions. We provide, in particular, an explicit construction of the Fourier transform of a maximizer for the dual Turán problem. This approach to the problem provides a direct link between certain aspects of the theory of frames in Fourier analysis and the Turán problem. In particular, as an intermediary step needed for our main result, we construct new families of Parseval frames, involving Bessel functions, on the interval [0, 1].
期刊介绍:
The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics.
TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers.
Areas of applications include the following:
antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications