余弦符号相关性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shilin Dou, Ansel Goh, Kevin Liu, Madeline Legate, Gavin Pettigrew
{"title":"余弦符号相关性","authors":"Shilin Dou, Ansel Goh, Kevin Liu, Madeline Legate, Gavin Pettigrew","doi":"10.1007/s00041-024-10067-1","DOIUrl":null,"url":null,"abstract":"<p>Fix <span>\\(\\left\\{ a_1, \\dots , a_n \\right\\} \\subset {\\mathbb {N}}\\)</span>, and let <i>x</i> be a uniformly distributed random variable on <span>\\([0,2\\pi ]\\)</span>. The probability <span>\\({\\mathbb {P}}(a_1,\\ldots ,a_n)\\)</span> that <span>\\(\\cos (a_1 x), \\dots , \\cos (a_n x)\\)</span> are either all positive or all negative is non-zero since <span>\\(\\cos (a_i x) \\sim 1\\)</span> for <i>x</i> in a neighborhood of 0. We are interested in how small this probability can be. Motivated by a problem in spectral theory, Goncalves, Oliveira e Silva, and Steinerberger proved that <span>\\({\\mathbb {P}}(a_1,a_2) \\ge 1/3\\)</span> with equality if and only if <span>\\(\\left\\{ a_1, a_2 \\right\\} = \\gcd (a_1, a_2)\\cdot \\left\\{ 1, 3\\right\\} \\)</span>. We prove <span>\\({\\mathbb {P}}(a_1,a_2,a_3)\\ge 1/9\\)</span> with equality if and only if <span>\\(\\left\\{ a_1, a_2, a_3 \\right\\} = \\gcd (a_1, a_2, a_3)\\cdot \\left\\{ 1, 3, 9\\right\\} \\)</span>. The pattern does not continue, as <span>\\(\\left\\{ 1,3,11,33\\right\\} \\)</span> achieves a smaller value than <span>\\(\\left\\{ 1,3,9,27\\right\\} \\)</span>. We conjecture multiples of <span>\\(\\left\\{ 1,3,11,33\\right\\} \\)</span> to be optimal for <span>\\(n=4\\)</span>, discuss implications for eigenfunctions of Schrödinger operators <span>\\(-\\Delta + V\\)</span>, and give an interpretation of the problem in terms of the lonely runner problem.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosine Sign Correlation\",\"authors\":\"Shilin Dou, Ansel Goh, Kevin Liu, Madeline Legate, Gavin Pettigrew\",\"doi\":\"10.1007/s00041-024-10067-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fix <span>\\\\(\\\\left\\\\{ a_1, \\\\dots , a_n \\\\right\\\\} \\\\subset {\\\\mathbb {N}}\\\\)</span>, and let <i>x</i> be a uniformly distributed random variable on <span>\\\\([0,2\\\\pi ]\\\\)</span>. The probability <span>\\\\({\\\\mathbb {P}}(a_1,\\\\ldots ,a_n)\\\\)</span> that <span>\\\\(\\\\cos (a_1 x), \\\\dots , \\\\cos (a_n x)\\\\)</span> are either all positive or all negative is non-zero since <span>\\\\(\\\\cos (a_i x) \\\\sim 1\\\\)</span> for <i>x</i> in a neighborhood of 0. We are interested in how small this probability can be. Motivated by a problem in spectral theory, Goncalves, Oliveira e Silva, and Steinerberger proved that <span>\\\\({\\\\mathbb {P}}(a_1,a_2) \\\\ge 1/3\\\\)</span> with equality if and only if <span>\\\\(\\\\left\\\\{ a_1, a_2 \\\\right\\\\} = \\\\gcd (a_1, a_2)\\\\cdot \\\\left\\\\{ 1, 3\\\\right\\\\} \\\\)</span>. We prove <span>\\\\({\\\\mathbb {P}}(a_1,a_2,a_3)\\\\ge 1/9\\\\)</span> with equality if and only if <span>\\\\(\\\\left\\\\{ a_1, a_2, a_3 \\\\right\\\\} = \\\\gcd (a_1, a_2, a_3)\\\\cdot \\\\left\\\\{ 1, 3, 9\\\\right\\\\} \\\\)</span>. The pattern does not continue, as <span>\\\\(\\\\left\\\\{ 1,3,11,33\\\\right\\\\} \\\\)</span> achieves a smaller value than <span>\\\\(\\\\left\\\\{ 1,3,9,27\\\\right\\\\} \\\\)</span>. We conjecture multiples of <span>\\\\(\\\\left\\\\{ 1,3,11,33\\\\right\\\\} \\\\)</span> to be optimal for <span>\\\\(n=4\\\\)</span>, discuss implications for eigenfunctions of Schrödinger operators <span>\\\\(-\\\\Delta + V\\\\)</span>, and give an interpretation of the problem in terms of the lonely runner problem.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-024-10067-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10067-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Fix\(\left\{ a_1,\dots , a_n\right\} \subset {\mathbb {N}}\), and let x be a uniformly distributed random variable on \([0,2\pi ]\).对于0附近的x,\(\cos (a_1 x), \dots , \cos (a_n x)\)要么全为正要么全为负的概率({\mathbb {P}}(a_1,\ldots ,a_n))是非零的,因为\(\cos (a_i x) \sim 1\) 。受光谱理论中一个问题的启发,冈卡尔维斯、奥利维拉-埃-席尔瓦和施泰纳伯格证明了当且仅当 \(\left\{ a_1, a_2 \right\} = \gcd (a_1, a_2)\cdot \left\{ 1, 3\right}) 时,({/mathbb {P}}(a_1,a_2) \ge 1/3/)是相等的。\).当且仅当 \left\{ a_1, a_2, a_3 \right\} = \gcd (a_1, a_2, a_3)\cdot \left\{ 1, 3, 9\right\} 时,我们证明({mathbb {P}}(a_1,a_2,a_3)\ge 1/9)是相等的。\).这个模式没有继续下去,因为(left/{ 1,3,11,33\right} \)得到的值比(left/{ 1,3,9,27\right} \)小。我们猜想对于\(n=4\)来说,\(left\{ 1,3,11,33\right}\) 的倍数是最优的,讨论了对薛定谔算子\(-\Delta + V\) 的特征函数的影响,并从孤独奔跑者问题的角度对这个问题进行了解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cosine Sign Correlation

Cosine Sign Correlation

Fix \(\left\{ a_1, \dots , a_n \right\} \subset {\mathbb {N}}\), and let x be a uniformly distributed random variable on \([0,2\pi ]\). The probability \({\mathbb {P}}(a_1,\ldots ,a_n)\) that \(\cos (a_1 x), \dots , \cos (a_n x)\) are either all positive or all negative is non-zero since \(\cos (a_i x) \sim 1\) for x in a neighborhood of 0. We are interested in how small this probability can be. Motivated by a problem in spectral theory, Goncalves, Oliveira e Silva, and Steinerberger proved that \({\mathbb {P}}(a_1,a_2) \ge 1/3\) with equality if and only if \(\left\{ a_1, a_2 \right\} = \gcd (a_1, a_2)\cdot \left\{ 1, 3\right\} \). We prove \({\mathbb {P}}(a_1,a_2,a_3)\ge 1/9\) with equality if and only if \(\left\{ a_1, a_2, a_3 \right\} = \gcd (a_1, a_2, a_3)\cdot \left\{ 1, 3, 9\right\} \). The pattern does not continue, as \(\left\{ 1,3,11,33\right\} \) achieves a smaller value than \(\left\{ 1,3,9,27\right\} \). We conjecture multiples of \(\left\{ 1,3,11,33\right\} \) to be optimal for \(n=4\), discuss implications for eigenfunctions of Schrödinger operators \(-\Delta + V\), and give an interpretation of the problem in terms of the lonely runner problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信