{"title":"纯过境模型的新偏心率参数化","authors":"Jason D. Eastman","doi":"10.1088/1538-3873/ad1412","DOIUrl":null,"url":null,"abstract":"We present a novel eccentricity parameterization for transit-only fits that allows us to efficiently sample the eccentricity and argument of periastron, while being able to generate a self-consistent model of a planet in a Keplerian orbit around its host star. With simulated fits of 330 randomly generated systems, we demonstrate that typical parameterizations often lead to inaccurate and overly precise determinations of the planetary eccentricity. However, our proposed parameterization allows us to accurately—and often precisely—recover the eccentricity for the simulated planetary systems with only transit data available.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Eccentricity Parameterization for Transit-only Models\",\"authors\":\"Jason D. Eastman\",\"doi\":\"10.1088/1538-3873/ad1412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel eccentricity parameterization for transit-only fits that allows us to efficiently sample the eccentricity and argument of periastron, while being able to generate a self-consistent model of a planet in a Keplerian orbit around its host star. With simulated fits of 330 randomly generated systems, we demonstrate that typical parameterizations often lead to inaccurate and overly precise determinations of the planetary eccentricity. However, our proposed parameterization allows us to accurately—and often precisely—recover the eccentricity for the simulated planetary systems with only transit data available.\",\"PeriodicalId\":20820,\"journal\":{\"name\":\"Publications of the Astronomical Society of the Pacific\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of the Pacific\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1538-3873/ad1412\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad1412","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A Novel Eccentricity Parameterization for Transit-only Models
We present a novel eccentricity parameterization for transit-only fits that allows us to efficiently sample the eccentricity and argument of periastron, while being able to generate a self-consistent model of a planet in a Keplerian orbit around its host star. With simulated fits of 330 randomly generated systems, we demonstrate that typical parameterizations often lead to inaccurate and overly precise determinations of the planetary eccentricity. However, our proposed parameterization allows us to accurately—and often precisely—recover the eccentricity for the simulated planetary systems with only transit data available.
期刊介绍:
The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.