直接构建大集规模的交叉互补序列集

Praveen Kumar, Sudhan Majhi, Subhabrata Paul
{"title":"直接构建大集规模的交叉互补序列集","authors":"Praveen Kumar, Sudhan Majhi, Subhabrata Paul","doi":"10.1007/s12095-024-00700-7","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a direct construction of novel type cross Z-complementary sequence sets (CZCSSs), whose aperiodic correlation sums exhibit zero correlation zones at both the front-end and tail-end shifts. CZCSS can be regarded as an extension of the symmetrical Z-complementary code set (SZCCS). The available construction of SZCCS has a limitation on the set size, with a maximum set size of 8. The proposed generalized Boolean function-based construction can generate CZCSS/SZCCS of length in the form of a non-power-of-two with variable set size <span>\\(2^{n+1}\\)</span>, where each code has <span>\\(2^{n+1}\\)</span> constituent sequences. The proposed construction also yields cross Z-complementary pairs and cross Z-complementary sets with a larger number of constituent sequences compared to the existing work.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"157 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct construction of cross z-complementary sequence sets with large set size\",\"authors\":\"Praveen Kumar, Sudhan Majhi, Subhabrata Paul\",\"doi\":\"10.1007/s12095-024-00700-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a direct construction of novel type cross Z-complementary sequence sets (CZCSSs), whose aperiodic correlation sums exhibit zero correlation zones at both the front-end and tail-end shifts. CZCSS can be regarded as an extension of the symmetrical Z-complementary code set (SZCCS). The available construction of SZCCS has a limitation on the set size, with a maximum set size of 8. The proposed generalized Boolean function-based construction can generate CZCSS/SZCCS of length in the form of a non-power-of-two with variable set size <span>\\\\(2^{n+1}\\\\)</span>, where each code has <span>\\\\(2^{n+1}\\\\)</span> constituent sequences. The proposed construction also yields cross Z-complementary pairs and cross Z-complementary sets with a larger number of constituent sequences compared to the existing work.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00700-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00700-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种直接构建新型交叉 Z 补充序列集(CZCSS)的方法,这种序列集的非周期性相关和在前端和尾端移位时都表现出零相关区。CZCSS 可视为对称 Z 补充码集(SZCCS)的扩展。现有的 SZCCS 结构对集合大小有限制,最大集合大小为 8,而本文提出的基于布尔函数的广义结构可以生成长度为非二幂形式的 CZCSS/SZCCS,集合大小为 \(2^{n+1}\),其中每个编码有 \(2^{n+1}\)个组成序列。与现有工作相比,所提出的构造还能产生具有更多组成序列的交叉 Z 互补对和交叉 Z 互补集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A direct construction of cross z-complementary sequence sets with large set size

This paper presents a direct construction of novel type cross Z-complementary sequence sets (CZCSSs), whose aperiodic correlation sums exhibit zero correlation zones at both the front-end and tail-end shifts. CZCSS can be regarded as an extension of the symmetrical Z-complementary code set (SZCCS). The available construction of SZCCS has a limitation on the set size, with a maximum set size of 8. The proposed generalized Boolean function-based construction can generate CZCSS/SZCCS of length in the form of a non-power-of-two with variable set size \(2^{n+1}\), where each code has \(2^{n+1}\) constituent sequences. The proposed construction also yields cross Z-complementary pairs and cross Z-complementary sets with a larger number of constituent sequences compared to the existing work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信