小有限域上最优 LCD 码的几种构造

Shitao Li, Minjia Shi, Huizhou Liu
{"title":"小有限域上最优 LCD 码的几种构造","authors":"Shitao Li, Minjia Shi, Huizhou Liu","doi":"10.1007/s12095-024-00699-x","DOIUrl":null,"url":null,"abstract":"<p>Linear complementary dual (LCD) codes are linear codes which intersect their dual codes trivially, which have been of interest and extensively studied due to their practical applications in computational complexity and information protection. In this paper, we give some methods for constructing LCD codes over small finite fields by modifying some typical methods for constructing linear codes. We show that all odd-like binary Euclidean LCD codes, ternary Euclidean LCD codes and quaternary Hermitian LCD codes can be constructed using the modified methods. Our results improve the known lower bounds on the largest minimum distances of LCD codes. Furthermore, we give two counterexamples to disprove the conjecture proposed by Bouyuklieva (Des. Codes Cryptogr. <b>89</b>(11), 2445–2461 2021).</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Several constructions of optimal LCD codes over small finite fields\",\"authors\":\"Shitao Li, Minjia Shi, Huizhou Liu\",\"doi\":\"10.1007/s12095-024-00699-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Linear complementary dual (LCD) codes are linear codes which intersect their dual codes trivially, which have been of interest and extensively studied due to their practical applications in computational complexity and information protection. In this paper, we give some methods for constructing LCD codes over small finite fields by modifying some typical methods for constructing linear codes. We show that all odd-like binary Euclidean LCD codes, ternary Euclidean LCD codes and quaternary Hermitian LCD codes can be constructed using the modified methods. Our results improve the known lower bounds on the largest minimum distances of LCD codes. Furthermore, we give two counterexamples to disprove the conjecture proposed by Bouyuklieva (Des. Codes Cryptogr. <b>89</b>(11), 2445–2461 2021).</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00699-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00699-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性互补对偶码(LCD)是与其对偶码有微小交集的线性码,由于其在计算复杂性和信息保护方面的实际应用,一直受到人们的关注和广泛研究。本文通过修改一些构造线性码的典型方法,给出了一些在小有限域上构造 LCD 码的方法。我们证明,所有奇样二元欧氏液晶编码、三元欧氏液晶编码和四元赫米特液晶编码都可以用修改后的方法来构造。我们的结果改进了液晶编码最大最小距离的已知下界。此外,我们给出了两个反例,推翻了布尤克里娃提出的猜想(Des.89(11), 2445-2461 2021)提出的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Several constructions of optimal LCD codes over small finite fields

Linear complementary dual (LCD) codes are linear codes which intersect their dual codes trivially, which have been of interest and extensively studied due to their practical applications in computational complexity and information protection. In this paper, we give some methods for constructing LCD codes over small finite fields by modifying some typical methods for constructing linear codes. We show that all odd-like binary Euclidean LCD codes, ternary Euclidean LCD codes and quaternary Hermitian LCD codes can be constructed using the modified methods. Our results improve the known lower bounds on the largest minimum distances of LCD codes. Furthermore, we give two counterexamples to disprove the conjecture proposed by Bouyuklieva (Des. Codes Cryptogr. 89(11), 2445–2461 2021).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信