非对称指数幂贝叶斯中值自回归及其应用

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhengwei Liu, Fukang Zhu
{"title":"非对称指数幂贝叶斯中值自回归及其应用","authors":"Zhengwei Liu, Fukang Zhu","doi":"10.1080/00949655.2024.2314616","DOIUrl":null,"url":null,"abstract":"Compared with the widely used mean-based models, the prediction based on median autoregression is often more robust for time series forecasting. Motivated by the asymmetric exponential power workin...","PeriodicalId":50040,"journal":{"name":"Journal of Statistical Computation and Simulation","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric exponential power Bayesian median autoregression with applications\",\"authors\":\"Zhengwei Liu, Fukang Zhu\",\"doi\":\"10.1080/00949655.2024.2314616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with the widely used mean-based models, the prediction based on median autoregression is often more robust for time series forecasting. Motivated by the asymmetric exponential power workin...\",\"PeriodicalId\":50040,\"journal\":{\"name\":\"Journal of Statistical Computation and Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Computation and Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00949655.2024.2314616\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Computation and Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00949655.2024.2314616","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

与广泛使用的基于均值的模型相比,基于中位数自回归的预测通常在时间序列预测中更为稳健。在非对称指数幂工作原理的激励下,中位数自回归模型可用于时间序列预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric exponential power Bayesian median autoregression with applications
Compared with the widely used mean-based models, the prediction based on median autoregression is often more robust for time series forecasting. Motivated by the asymmetric exponential power workin...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Computation and Simulation
Journal of Statistical Computation and Simulation 数学-计算机:跨学科应用
CiteScore
2.30
自引率
8.30%
发文量
156
审稿时长
4-8 weeks
期刊介绍: Journal of Statistical Computation and Simulation ( JSCS ) publishes significant and original work in areas of statistics which are related to or dependent upon the computer. Fields covered include computer algorithms related to probability or statistics, studies in statistical inference by means of simulation techniques, and implementation of interactive statistical systems. JSCS does not consider applications of statistics to other fields, except as illustrations of the use of the original statistics presented. Accepted papers should ideally appeal to a wide audience of statisticians and provoke real applications of theoretical constructions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信