格拉斯曼切向束的等变量子微分方程的单色性

Vitaly Tarasov, Alexander Varchenko
{"title":"格拉斯曼切向束的等变量子微分方程的单色性","authors":"Vitaly Tarasov, Alexander Varchenko","doi":"10.1007/s00029-024-00916-8","DOIUrl":null,"url":null,"abstract":"<p>We describe the monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian in terms of the equivariant <span>\\(\\,K\\,\\)</span>-theory algebra of the cotangent bundle. This description is based on the hypergeometric integral representations for solutions of the equivariant quantum differential equation. We identify the space of solutions with the space of the equivariant <span>\\(\\,K\\,\\)</span>-theory algebra of the cotangent bundle. In particular, we show that for any element of the monodromy group, all entries of its matrix in the standard basis of the equivariant <span>\\(\\,K\\,\\)</span>-theory algebra of the cotangent bundle are Laurent polynomials with integer coefficients in the exponentiated equivariant parameters.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian\",\"authors\":\"Vitaly Tarasov, Alexander Varchenko\",\"doi\":\"10.1007/s00029-024-00916-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe the monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian in terms of the equivariant <span>\\\\(\\\\,K\\\\,\\\\)</span>-theory algebra of the cotangent bundle. This description is based on the hypergeometric integral representations for solutions of the equivariant quantum differential equation. We identify the space of solutions with the space of the equivariant <span>\\\\(\\\\,K\\\\,\\\\)</span>-theory algebra of the cotangent bundle. In particular, we show that for any element of the monodromy group, all entries of its matrix in the standard basis of the equivariant <span>\\\\(\\\\,K\\\\,\\\\)</span>-theory algebra of the cotangent bundle are Laurent polynomials with integer coefficients in the exponentiated equivariant parameters.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00916-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00916-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用格拉斯曼余切束的等(\,K\,\)理论代数来描述余切束等变量子微分方程的单色性。这种描述基于等变量子微分方程解的超几何积分表征。我们将解的空间与余切束的等(\,K\,\)理论代数的空间相识别。特别是,我们证明了对于单色群的任何元素,其矩阵在余切束的等(\,K\,\)理论代数的标准基础上的所有项都是在指数化等参数中具有整数系数的洛朗多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian

We describe the monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian in terms of the equivariant \(\,K\,\)-theory algebra of the cotangent bundle. This description is based on the hypergeometric integral representations for solutions of the equivariant quantum differential equation. We identify the space of solutions with the space of the equivariant \(\,K\,\)-theory algebra of the cotangent bundle. In particular, we show that for any element of the monodromy group, all entries of its matrix in the standard basis of the equivariant \(\,K\,\)-theory algebra of the cotangent bundle are Laurent polynomials with integer coefficients in the exponentiated equivariant parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信