Orlicz 空间中非线性椭圆方程的存在性和正则性结果

Giuseppina Barletta
{"title":"Orlicz 空间中非线性椭圆方程的存在性和正则性结果","authors":"Giuseppina Barletta","doi":"10.1007/s00030-024-00922-x","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the existence and regularity of the solutions to the Dirichlet problem, for a class of quasilinear elliptic equations driven by a general differential operator, depending on <span>\\((x,u,\\nabla u)\\)</span>, and with a convective term <i>f</i>. The assumptions on the members of the equation are formulated in terms of Young’s functions, therefore we work in the Orlicz-Sobolev spaces. After establishing some auxiliary properties, that seem new in our context, we present two existence and two regularity results. We conclude with several examples.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"332 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and regularity results for nonlinear elliptic equations in Orlicz spaces\",\"authors\":\"Giuseppina Barletta\",\"doi\":\"10.1007/s00030-024-00922-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with the existence and regularity of the solutions to the Dirichlet problem, for a class of quasilinear elliptic equations driven by a general differential operator, depending on <span>\\\\((x,u,\\\\nabla u)\\\\)</span>, and with a convective term <i>f</i>. The assumptions on the members of the equation are formulated in terms of Young’s functions, therefore we work in the Orlicz-Sobolev spaces. After establishing some auxiliary properties, that seem new in our context, we present two existence and two regularity results. We conclude with several examples.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"332 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00922-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00922-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们关注的是一类由一般微分算子驱动的准线性椭圆方程(取决于 \((x,u,\nabla u)\))和对流项 f 的 Dirichlet 问题解的存在性和正则性。在建立了一些在我们的语境中似乎是新的辅助性质之后,我们提出了两个存在性和两个正则性结果。最后,我们以几个例子作结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and regularity results for nonlinear elliptic equations in Orlicz spaces

We are concerned with the existence and regularity of the solutions to the Dirichlet problem, for a class of quasilinear elliptic equations driven by a general differential operator, depending on \((x,u,\nabla u)\), and with a convective term f. The assumptions on the members of the equation are formulated in terms of Young’s functions, therefore we work in the Orlicz-Sobolev spaces. After establishing some auxiliary properties, that seem new in our context, we present two existence and two regularity results. We conclude with several examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信