Alessandro Fonda, Natnael Gezahegn Mamo, Franco Obersnel, Andrea Sfecci
{"title":"具有诺伊曼型边界条件的哈密顿系统的多重性结果","authors":"Alessandro Fonda, Natnael Gezahegn Mamo, Franco Obersnel, Andrea Sfecci","doi":"10.1007/s00030-023-00913-4","DOIUrl":null,"url":null,"abstract":"<p>We prove some multiplicity results for Neumann-type boundary value problems associated with a Hamiltonian system. Such a system can be seen as the weak coupling of two systems, the first of which has some periodicity properties in the Hamiltonian function, the second one presenting the existence of a well-ordered pair of lower/upper solutions.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity results for Hamiltonian systems with Neumann-type boundary conditions\",\"authors\":\"Alessandro Fonda, Natnael Gezahegn Mamo, Franco Obersnel, Andrea Sfecci\",\"doi\":\"10.1007/s00030-023-00913-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove some multiplicity results for Neumann-type boundary value problems associated with a Hamiltonian system. Such a system can be seen as the weak coupling of two systems, the first of which has some periodicity properties in the Hamiltonian function, the second one presenting the existence of a well-ordered pair of lower/upper solutions.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00913-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00913-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiplicity results for Hamiltonian systems with Neumann-type boundary conditions
We prove some multiplicity results for Neumann-type boundary value problems associated with a Hamiltonian system. Such a system can be seen as the weak coupling of two systems, the first of which has some periodicity properties in the Hamiltonian function, the second one presenting the existence of a well-ordered pair of lower/upper solutions.