Cesare Molinari, Mathurin Massias, Lorenzo Rosasco, Silvia Villa
{"title":"低复杂度正则的迭代正则化","authors":"Cesare Molinari, Mathurin Massias, Lorenzo Rosasco, Silvia Villa","doi":"10.1007/s00211-023-01390-8","DOIUrl":null,"url":null,"abstract":"<p>Iterative regularization exploits the implicit bias of optimization algorithms to regularize ill-posed problems. Constructing algorithms with such built-in regularization mechanisms is a classic challenge in inverse problems but also in modern machine learning, where it provides both a new perspective on algorithms analysis, and significant speed-ups compared to explicit regularization. In this work, we propose and study the first iterative regularization procedure with explicit computational steps able to handle biases described by non smooth and non strongly convex functionals, prominent in low-complexity regularization. Our approach is based on a primal-dual algorithm of which we analyze convergence and stability properties, even in the case where the original problem is unfeasible. The general results are illustrated considering the special case of sparse recovery with the <span>\\(\\ell _1\\)</span> penalty. Our theoretical results are complemented by experiments showing the computational benefits of our approach.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative regularization for low complexity regularizers\",\"authors\":\"Cesare Molinari, Mathurin Massias, Lorenzo Rosasco, Silvia Villa\",\"doi\":\"10.1007/s00211-023-01390-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iterative regularization exploits the implicit bias of optimization algorithms to regularize ill-posed problems. Constructing algorithms with such built-in regularization mechanisms is a classic challenge in inverse problems but also in modern machine learning, where it provides both a new perspective on algorithms analysis, and significant speed-ups compared to explicit regularization. In this work, we propose and study the first iterative regularization procedure with explicit computational steps able to handle biases described by non smooth and non strongly convex functionals, prominent in low-complexity regularization. Our approach is based on a primal-dual algorithm of which we analyze convergence and stability properties, even in the case where the original problem is unfeasible. The general results are illustrated considering the special case of sparse recovery with the <span>\\\\(\\\\ell _1\\\\)</span> penalty. Our theoretical results are complemented by experiments showing the computational benefits of our approach.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01390-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01390-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Iterative regularization for low complexity regularizers
Iterative regularization exploits the implicit bias of optimization algorithms to regularize ill-posed problems. Constructing algorithms with such built-in regularization mechanisms is a classic challenge in inverse problems but also in modern machine learning, where it provides both a new perspective on algorithms analysis, and significant speed-ups compared to explicit regularization. In this work, we propose and study the first iterative regularization procedure with explicit computational steps able to handle biases described by non smooth and non strongly convex functionals, prominent in low-complexity regularization. Our approach is based on a primal-dual algorithm of which we analyze convergence and stability properties, even in the case where the original problem is unfeasible. The general results are illustrated considering the special case of sparse recovery with the \(\ell _1\) penalty. Our theoretical results are complemented by experiments showing the computational benefits of our approach.
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing