强外部磁场中空气中正流线的三维模拟

Zhen Wang, Anbang Sun, Saša Dujko, Ute Ebert, Jannis Teunissen
{"title":"强外部磁场中空气中正流线的三维模拟","authors":"Zhen Wang, Anbang Sun, Saša Dujko, Ute Ebert, Jannis Teunissen","doi":"10.1088/1361-6595/ad227f","DOIUrl":null,"url":null,"abstract":"We study how external magnetic fields from 0 to 40 T influence positive streamers in atmospheric pressure air, using 3D PIC-MCC (particle-in-cell, Monte Carlo collision) simulations. When a magnetic field <bold>\n<italic toggle=\"yes\">B</italic>\n</bold> is applied perpendicular to the background electric field <bold>\n<italic toggle=\"yes\">E</italic>\n</bold>, the streamers deflect towards the <inline-formula>\n<tex-math><?CDATA $+\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>+</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $-\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>−</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> directions which results in a branching into two main channels. With a stronger magnetic field the angle between the branches increases, and for the 40 T case the branches grow almost parallel to the magnetic field. Due to the <inline-formula>\n<tex-math><?CDATA $\\boldsymbol{E}\\times\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"bold-italic\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> drift of electrons we also observe a streamer deviation in the opposite <inline-formula>\n<tex-math><?CDATA $-\\boldsymbol{E}\\times\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>−</mml:mo><mml:mi mathvariant=\"bold-italic\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> direction, where the minus sign appears because positive streamers propagate opposite to the electron drift velocity. The deviation due to this <inline-formula>\n<tex-math><?CDATA $\\boldsymbol{E}\\times\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"bold-italic\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> effect is smaller than the deviation parallel to <bold>\n<italic toggle=\"yes\">B</italic>\n</bold>. In both cases of <bold>\n<italic toggle=\"yes\">B</italic>\n</bold> perpendicular and parallel to <bold>\n<italic toggle=\"yes\">E</italic>\n</bold>, the streamer radius decreases with the magnetic field strength. We relate our observations to the effects of electric and magnetic fields on electron transport and reaction coefficients.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D simulations of positive streamers in air in a strong external magnetic field\",\"authors\":\"Zhen Wang, Anbang Sun, Saša Dujko, Ute Ebert, Jannis Teunissen\",\"doi\":\"10.1088/1361-6595/ad227f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study how external magnetic fields from 0 to 40 T influence positive streamers in atmospheric pressure air, using 3D PIC-MCC (particle-in-cell, Monte Carlo collision) simulations. When a magnetic field <bold>\\n<italic toggle=\\\"yes\\\">B</italic>\\n</bold> is applied perpendicular to the background electric field <bold>\\n<italic toggle=\\\"yes\\\">E</italic>\\n</bold>, the streamers deflect towards the <inline-formula>\\n<tex-math><?CDATA $+\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mo>+</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math><?CDATA $-\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mo>−</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> directions which results in a branching into two main channels. With a stronger magnetic field the angle between the branches increases, and for the 40 T case the branches grow almost parallel to the magnetic field. Due to the <inline-formula>\\n<tex-math><?CDATA $\\\\boldsymbol{E}\\\\times\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi mathvariant=\\\"bold-italic\\\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> drift of electrons we also observe a streamer deviation in the opposite <inline-formula>\\n<tex-math><?CDATA $-\\\\boldsymbol{E}\\\\times\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mo>−</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> direction, where the minus sign appears because positive streamers propagate opposite to the electron drift velocity. The deviation due to this <inline-formula>\\n<tex-math><?CDATA $\\\\boldsymbol{E}\\\\times\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi mathvariant=\\\"bold-italic\\\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> effect is smaller than the deviation parallel to <bold>\\n<italic toggle=\\\"yes\\\">B</italic>\\n</bold>. In both cases of <bold>\\n<italic toggle=\\\"yes\\\">B</italic>\\n</bold> perpendicular and parallel to <bold>\\n<italic toggle=\\\"yes\\\">E</italic>\\n</bold>, the streamer radius decreases with the magnetic field strength. We relate our observations to the effects of electric and magnetic fields on electron transport and reaction coefficients.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad227f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad227f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用三维 PIC-MCC(粒子在细胞中的蒙特卡罗碰撞)模拟,研究了 0 到 40 T 的外部磁场如何影响大气压空气中的正流线。当磁场 B 垂直于背景电场 E 时,流线会向 +B 和 -B 方向偏转,从而分成两条主通道。随着磁场强度的增大,分支之间的角度也会增大,在 40 T 的情况下,分支几乎与磁场平行。由于电子的 E×B 漂移,我们还观察到流线在相反的 -E×B 方向上的偏离,出现负号是因为正流线的传播速度与电子漂移速度相反。在垂直于 B 和平行于 E 的两种情况下,流线半径都会随着磁场强度的增加而减小。我们将观察结果与电场和磁场对电子传输和反应系数的影响联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D simulations of positive streamers in air in a strong external magnetic field
We study how external magnetic fields from 0 to 40 T influence positive streamers in atmospheric pressure air, using 3D PIC-MCC (particle-in-cell, Monte Carlo collision) simulations. When a magnetic field B is applied perpendicular to the background electric field E , the streamers deflect towards the +B and B directions which results in a branching into two main channels. With a stronger magnetic field the angle between the branches increases, and for the 40 T case the branches grow almost parallel to the magnetic field. Due to the E×B drift of electrons we also observe a streamer deviation in the opposite E×B direction, where the minus sign appears because positive streamers propagate opposite to the electron drift velocity. The deviation due to this E×B effect is smaller than the deviation parallel to B . In both cases of B perpendicular and parallel to E , the streamer radius decreases with the magnetic field strength. We relate our observations to the effects of electric and magnetic fields on electron transport and reaction coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信