{"title":"强外部磁场中空气中正流线的三维模拟","authors":"Zhen Wang, Anbang Sun, Saša Dujko, Ute Ebert, Jannis Teunissen","doi":"10.1088/1361-6595/ad227f","DOIUrl":null,"url":null,"abstract":"We study how external magnetic fields from 0 to 40 T influence positive streamers in atmospheric pressure air, using 3D PIC-MCC (particle-in-cell, Monte Carlo collision) simulations. When a magnetic field <bold>\n<italic toggle=\"yes\">B</italic>\n</bold> is applied perpendicular to the background electric field <bold>\n<italic toggle=\"yes\">E</italic>\n</bold>, the streamers deflect towards the <inline-formula>\n<tex-math><?CDATA $+\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>+</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $-\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>−</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> directions which results in a branching into two main channels. With a stronger magnetic field the angle between the branches increases, and for the 40 T case the branches grow almost parallel to the magnetic field. Due to the <inline-formula>\n<tex-math><?CDATA $\\boldsymbol{E}\\times\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"bold-italic\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> drift of electrons we also observe a streamer deviation in the opposite <inline-formula>\n<tex-math><?CDATA $-\\boldsymbol{E}\\times\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>−</mml:mo><mml:mi mathvariant=\"bold-italic\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> direction, where the minus sign appears because positive streamers propagate opposite to the electron drift velocity. The deviation due to this <inline-formula>\n<tex-math><?CDATA $\\boldsymbol{E}\\times\\boldsymbol{B}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"bold-italic\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad227fieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> effect is smaller than the deviation parallel to <bold>\n<italic toggle=\"yes\">B</italic>\n</bold>. In both cases of <bold>\n<italic toggle=\"yes\">B</italic>\n</bold> perpendicular and parallel to <bold>\n<italic toggle=\"yes\">E</italic>\n</bold>, the streamer radius decreases with the magnetic field strength. We relate our observations to the effects of electric and magnetic fields on electron transport and reaction coefficients.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D simulations of positive streamers in air in a strong external magnetic field\",\"authors\":\"Zhen Wang, Anbang Sun, Saša Dujko, Ute Ebert, Jannis Teunissen\",\"doi\":\"10.1088/1361-6595/ad227f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study how external magnetic fields from 0 to 40 T influence positive streamers in atmospheric pressure air, using 3D PIC-MCC (particle-in-cell, Monte Carlo collision) simulations. When a magnetic field <bold>\\n<italic toggle=\\\"yes\\\">B</italic>\\n</bold> is applied perpendicular to the background electric field <bold>\\n<italic toggle=\\\"yes\\\">E</italic>\\n</bold>, the streamers deflect towards the <inline-formula>\\n<tex-math><?CDATA $+\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mo>+</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math><?CDATA $-\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mo>−</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> directions which results in a branching into two main channels. With a stronger magnetic field the angle between the branches increases, and for the 40 T case the branches grow almost parallel to the magnetic field. Due to the <inline-formula>\\n<tex-math><?CDATA $\\\\boldsymbol{E}\\\\times\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi mathvariant=\\\"bold-italic\\\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> drift of electrons we also observe a streamer deviation in the opposite <inline-formula>\\n<tex-math><?CDATA $-\\\\boldsymbol{E}\\\\times\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mo>−</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> direction, where the minus sign appears because positive streamers propagate opposite to the electron drift velocity. The deviation due to this <inline-formula>\\n<tex-math><?CDATA $\\\\boldsymbol{E}\\\\times\\\\boldsymbol{B}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi mathvariant=\\\"bold-italic\\\">E</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\\\"bold-italic\\\">B</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad227fieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> effect is smaller than the deviation parallel to <bold>\\n<italic toggle=\\\"yes\\\">B</italic>\\n</bold>. In both cases of <bold>\\n<italic toggle=\\\"yes\\\">B</italic>\\n</bold> perpendicular and parallel to <bold>\\n<italic toggle=\\\"yes\\\">E</italic>\\n</bold>, the streamer radius decreases with the magnetic field strength. We relate our observations to the effects of electric and magnetic fields on electron transport and reaction coefficients.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad227f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad227f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们利用三维 PIC-MCC(粒子在细胞中的蒙特卡罗碰撞)模拟,研究了 0 到 40 T 的外部磁场如何影响大气压空气中的正流线。当磁场 B 垂直于背景电场 E 时,流线会向 +B 和 -B 方向偏转,从而分成两条主通道。随着磁场强度的增大,分支之间的角度也会增大,在 40 T 的情况下,分支几乎与磁场平行。由于电子的 E×B 漂移,我们还观察到流线在相反的 -E×B 方向上的偏离,出现负号是因为正流线的传播速度与电子漂移速度相反。在垂直于 B 和平行于 E 的两种情况下,流线半径都会随着磁场强度的增加而减小。我们将观察结果与电场和磁场对电子传输和反应系数的影响联系起来。
3D simulations of positive streamers in air in a strong external magnetic field
We study how external magnetic fields from 0 to 40 T influence positive streamers in atmospheric pressure air, using 3D PIC-MCC (particle-in-cell, Monte Carlo collision) simulations. When a magnetic field B is applied perpendicular to the background electric field E, the streamers deflect towards the +B and −B directions which results in a branching into two main channels. With a stronger magnetic field the angle between the branches increases, and for the 40 T case the branches grow almost parallel to the magnetic field. Due to the E×B drift of electrons we also observe a streamer deviation in the opposite −E×B direction, where the minus sign appears because positive streamers propagate opposite to the electron drift velocity. The deviation due to this E×B effect is smaller than the deviation parallel to B. In both cases of B perpendicular and parallel to E, the streamer radius decreases with the magnetic field strength. We relate our observations to the effects of electric and magnetic fields on electron transport and reaction coefficients.