关于超对称场中某些潘勒夫和施罗德函数方程的同态解增长的结果

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Houda Boughaba, Salih Bouternikh, Tahar Zerzaihi
{"title":"关于超对称场中某些潘勒夫和施罗德函数方程的同态解增长的结果","authors":"Houda Boughaba, Salih Bouternikh, Tahar Zerzaihi","doi":"10.1134/s2070046624010023","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Let <span>\\(\\mathbb{K}\\)</span> be a complete ultrametric algebraically closed field of characteristic zero and let <span>\\(\\mathcal{M}(\\mathbb{K})\\)</span> be the field of meromorphic functions in all <span>\\(\\mathbb{K}\\)</span>. In this paper, we investigate the growth of meromorphic solutions of some difference and <span>\\(q\\)</span>-difference equations. We obtain some results on the growth of meromorphic solutions when the coefficients in such equations are rational functions. </p>","PeriodicalId":44654,"journal":{"name":"P-Adic Numbers Ultrametric Analysis and Applications","volume":"14 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results on the Growth of Meromorphic Solutions of some Functional Equations of Painlevé and Schröder Type in Ultrametric Fields\",\"authors\":\"Houda Boughaba, Salih Bouternikh, Tahar Zerzaihi\",\"doi\":\"10.1134/s2070046624010023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> Let <span>\\\\(\\\\mathbb{K}\\\\)</span> be a complete ultrametric algebraically closed field of characteristic zero and let <span>\\\\(\\\\mathcal{M}(\\\\mathbb{K})\\\\)</span> be the field of meromorphic functions in all <span>\\\\(\\\\mathbb{K}\\\\)</span>. In this paper, we investigate the growth of meromorphic solutions of some difference and <span>\\\\(q\\\\)</span>-difference equations. We obtain some results on the growth of meromorphic solutions when the coefficients in such equations are rational functions. </p>\",\"PeriodicalId\":44654,\"journal\":{\"name\":\"P-Adic Numbers Ultrametric Analysis and Applications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"P-Adic Numbers Ultrametric Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s2070046624010023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"P-Adic Numbers Ultrametric Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2070046624010023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 让 \(\mathbb{K}\) 是特征为零的完全超对称代数封闭域,让 \(\mathcal{M}(\mathbb{K})\) 是所有 \(\mathbb{K}\) 中的非定常函数域。本文研究了一些差分方程和 \(q\)-difference 方程中的微函数解的增长。当这些方程中的系数为有理函数时,我们得到了一些关于微形态解增长的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Results on the Growth of Meromorphic Solutions of some Functional Equations of Painlevé and Schröder Type in Ultrametric Fields

Abstract

Let \(\mathbb{K}\) be a complete ultrametric algebraically closed field of characteristic zero and let \(\mathcal{M}(\mathbb{K})\) be the field of meromorphic functions in all \(\mathbb{K}\). In this paper, we investigate the growth of meromorphic solutions of some difference and \(q\)-difference equations. We obtain some results on the growth of meromorphic solutions when the coefficients in such equations are rational functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
P-Adic Numbers Ultrametric Analysis and Applications
P-Adic Numbers Ultrametric Analysis and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.10
自引率
20.00%
发文量
16
期刊介绍: This is a new international interdisciplinary journal which contains original articles, short communications, and reviews on progress in various areas of pure and applied mathematics related with p-adic, adelic and ultrametric methods, including: mathematical physics, quantum theory, string theory, cosmology, nanoscience, life sciences; mathematical analysis, number theory, algebraic geometry, non-Archimedean and non-commutative geometry, theory of finite fields and rings, representation theory, functional analysis and graph theory; classical and quantum information, computer science, cryptography, image analysis, cognitive models, neural networks and bioinformatics; complex systems, dynamical systems, stochastic processes, hierarchy structures, modeling, control theory, economics and sociology; mesoscopic and nano systems, disordered and chaotic systems, spin glasses, macromolecules, molecular dynamics, biopolymers, genomics and biology; and other related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信