抛物线双线性最优控制问题中最优形状的存在性

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Idriss Mazari-Fouquer
{"title":"抛物线双线性最优控制问题中最优形状的存在性","authors":"Idriss Mazari-Fouquer","doi":"10.1007/s00205-024-01958-0","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to prove the existence of optimal shapes in bilinear parabolic optimal control problems. We consider a parabolic equation <span>\\(\\partial _tu_m-\\Delta u_m=f(t,x,u_m)+mu_m\\)</span>. The set of admissible controls is given by <span>\\(A=\\{m\\in L^\\infty \\,, m_-\\leqq m\\leqq m_+{\\text { almost everywhere, }}\\int _\\Omega m(t,\\cdot )=V_1(t)\\}\\)</span>, where <span>\\(m_\\pm =m_\\pm (t,x)\\)</span> are two reference functions in <span>\\(L^\\infty ({(0,T)\\times {\\Omega }})\\)</span>, and where <span>\\(V_1=V_1(t)\\)</span> is a reference integral constraint. The functional to optimise is <span>\\(J:m\\mapsto \\iint _{(0,T)\\times {\\Omega }} j_1(u_m)+\\int _{\\Omega }j_2(u_m(T))\\)</span>. Roughly speaking, we prove that, if <span>\\(j_1\\)</span> and <span>\\(j_2\\)</span> are non-decreasing and if one is increasing, then any solution of <span>\\(\\max _A J\\)</span> is bang-bang: any optimal <span>\\(m^*\\)</span> writes <span>\\(m^*=\\mathbb {1}_E m_-+\\mathbb {1}_{E^c}m_+\\)</span> for some <span>\\(E\\subset {(0,T)\\times {\\Omega }}\\)</span>. From the point of view of shape optimization, this is a parabolic analog of the Buttazzo-Dal Maso theorem in shape optimisation. The proof is based on second-order criteria and on an approximation-localisation procedure for admissible perturbations. This last part uses the theory of parabolic equations with measure data.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Optimal Shapes in Parabolic Bilinear Optimal Control Problems\",\"authors\":\"Idriss Mazari-Fouquer\",\"doi\":\"10.1007/s00205-024-01958-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to prove the existence of optimal shapes in bilinear parabolic optimal control problems. We consider a parabolic equation <span>\\\\(\\\\partial _tu_m-\\\\Delta u_m=f(t,x,u_m)+mu_m\\\\)</span>. The set of admissible controls is given by <span>\\\\(A=\\\\{m\\\\in L^\\\\infty \\\\,, m_-\\\\leqq m\\\\leqq m_+{\\\\text { almost everywhere, }}\\\\int _\\\\Omega m(t,\\\\cdot )=V_1(t)\\\\}\\\\)</span>, where <span>\\\\(m_\\\\pm =m_\\\\pm (t,x)\\\\)</span> are two reference functions in <span>\\\\(L^\\\\infty ({(0,T)\\\\times {\\\\Omega }})\\\\)</span>, and where <span>\\\\(V_1=V_1(t)\\\\)</span> is a reference integral constraint. The functional to optimise is <span>\\\\(J:m\\\\mapsto \\\\iint _{(0,T)\\\\times {\\\\Omega }} j_1(u_m)+\\\\int _{\\\\Omega }j_2(u_m(T))\\\\)</span>. Roughly speaking, we prove that, if <span>\\\\(j_1\\\\)</span> and <span>\\\\(j_2\\\\)</span> are non-decreasing and if one is increasing, then any solution of <span>\\\\(\\\\max _A J\\\\)</span> is bang-bang: any optimal <span>\\\\(m^*\\\\)</span> writes <span>\\\\(m^*=\\\\mathbb {1}_E m_-+\\\\mathbb {1}_{E^c}m_+\\\\)</span> for some <span>\\\\(E\\\\subset {(0,T)\\\\times {\\\\Omega }}\\\\)</span>. From the point of view of shape optimization, this is a parabolic analog of the Buttazzo-Dal Maso theorem in shape optimisation. The proof is based on second-order criteria and on an approximation-localisation procedure for admissible perturbations. This last part uses the theory of parabolic equations with measure data.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01958-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01958-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在证明双线性抛物线最优控制问题中最优形状的存在性。我们考虑一个抛物方程(partial _tu_m-\Delta u_m=f(t,x,u_m)+mu_m/)。可接受控制的集合由 A={m\in L^\infty\,, m_-\leqq m\leqq m_+{text { almost everywhere, }}int _\Omega m(t,\cdot )=V_1(t)\}\) 给出、其中 \(m_\pm =m_\pm (t,x)\) 是 \(L^\infty ({(0,T)\times {\Omega }})\) 中的两个参考函数,而 \(V_1=V_1(t)\) 是一个参考积分约束。要优化的函数是 (J:m:mapsto \iint _{(0,T)\times {\Omega }} j_1(u_m)+\int _\{Omega }j_2(u_m(T))\).粗略地说,我们可以证明,如果 \(j_1\) 和 \(j_2\) 不递减,如果其中一个递增,那么 \(\max _A J\) 的任何解都是砰砰的:任何最优的 \(m^*\) 写作 \(m^*=\mathbb {1}_E m_-+\mathbb {1}_{E^c}m_+\) for some \(E\subset {(0,T)\times {\Omega }}\).从形状优化的角度来看,这是形状优化中 Buttazzo-Dal Maso 定理的抛物线类比。证明基于二阶标准和可允许扰动的近似定位程序。最后一部分使用了带有度量数据的抛物方程理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Optimal Shapes in Parabolic Bilinear Optimal Control Problems

The aim of this paper is to prove the existence of optimal shapes in bilinear parabolic optimal control problems. We consider a parabolic equation \(\partial _tu_m-\Delta u_m=f(t,x,u_m)+mu_m\). The set of admissible controls is given by \(A=\{m\in L^\infty \,, m_-\leqq m\leqq m_+{\text { almost everywhere, }}\int _\Omega m(t,\cdot )=V_1(t)\}\), where \(m_\pm =m_\pm (t,x)\) are two reference functions in \(L^\infty ({(0,T)\times {\Omega }})\), and where \(V_1=V_1(t)\) is a reference integral constraint. The functional to optimise is \(J:m\mapsto \iint _{(0,T)\times {\Omega }} j_1(u_m)+\int _{\Omega }j_2(u_m(T))\). Roughly speaking, we prove that, if \(j_1\) and \(j_2\) are non-decreasing and if one is increasing, then any solution of \(\max _A J\) is bang-bang: any optimal \(m^*\) writes \(m^*=\mathbb {1}_E m_-+\mathbb {1}_{E^c}m_+\) for some \(E\subset {(0,T)\times {\Omega }}\). From the point of view of shape optimization, this is a parabolic analog of the Buttazzo-Dal Maso theorem in shape optimisation. The proof is based on second-order criteria and on an approximation-localisation procedure for admissible perturbations. This last part uses the theory of parabolic equations with measure data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信