边缘计算中基于 NOMA 增强型车联网的联合任务卸载和多任务卸载

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jie Zhao, Ahmed M. El-Sherbeeny
{"title":"边缘计算中基于 NOMA 增强型车联网的联合任务卸载和多任务卸载","authors":"Jie Zhao, Ahmed M. El-Sherbeeny","doi":"10.1007/s10723-024-09748-4","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of technology, the Internet of vehicles (IoV) has become increasingly important. However, as the number of vehicles on highways increases, ensuring reliable communication between them has become a significant challenge. To address this issue, this paper proposes a novel approach that combines Non-Orthogonal Multiple Access (NOMA) with a time-optimized multitask offloading model based on Optimal Stopping Theory (OST) principles. NOMA-OST is a promising technology that can address the high volume of multiple access and the need for reliable communication in IoV. A NOMA-OST-based IoV system is proposed to meet the Vehicle-to-Vehicle (V2V) communication requirements. This approach optimizes joint task offloading and resource allocation for multiple users, tasks, and servers. NOMA enables efficient resource sharing by accommodating multiple devices, whereas OST ensures timely and intelligent task offloading decisions, resulting in improved reliability and efficiency in V2V communication within IoV, making it a highly innovative and technically robust solution. It suggests a low-complexity sub-optimal matching approach for sub-channel allocation to increase the effectiveness of offloading. Simulation results show that NOMA with OST significantly improves the system’s energy efficiency (EE) and reduces computation time. The approach also enhances the effectiveness of task offloading and resource allocation, leading to better overall system performance. The performance of NOMA with OST under V2V communication requirements in IoV is significantly improved compared to traditional orthogonal multiaccess methods. Overall, NOMA with OST is a promising technology that can address the high reliability of V2V communication requirements in IoV. It can improve system performance, and energy efficiency and reduce computation time, making it a valuable technology for IoV applications.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"33 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Task Offloading and Multi-Task Offloading Based on NOMA Enhanced Internet of Vehicles in Edge Computing\",\"authors\":\"Jie Zhao, Ahmed M. El-Sherbeeny\",\"doi\":\"10.1007/s10723-024-09748-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid development of technology, the Internet of vehicles (IoV) has become increasingly important. However, as the number of vehicles on highways increases, ensuring reliable communication between them has become a significant challenge. To address this issue, this paper proposes a novel approach that combines Non-Orthogonal Multiple Access (NOMA) with a time-optimized multitask offloading model based on Optimal Stopping Theory (OST) principles. NOMA-OST is a promising technology that can address the high volume of multiple access and the need for reliable communication in IoV. A NOMA-OST-based IoV system is proposed to meet the Vehicle-to-Vehicle (V2V) communication requirements. This approach optimizes joint task offloading and resource allocation for multiple users, tasks, and servers. NOMA enables efficient resource sharing by accommodating multiple devices, whereas OST ensures timely and intelligent task offloading decisions, resulting in improved reliability and efficiency in V2V communication within IoV, making it a highly innovative and technically robust solution. It suggests a low-complexity sub-optimal matching approach for sub-channel allocation to increase the effectiveness of offloading. Simulation results show that NOMA with OST significantly improves the system’s energy efficiency (EE) and reduces computation time. The approach also enhances the effectiveness of task offloading and resource allocation, leading to better overall system performance. The performance of NOMA with OST under V2V communication requirements in IoV is significantly improved compared to traditional orthogonal multiaccess methods. Overall, NOMA with OST is a promising technology that can address the high reliability of V2V communication requirements in IoV. It can improve system performance, and energy efficiency and reduce computation time, making it a valuable technology for IoV applications.</p>\",\"PeriodicalId\":54817,\"journal\":{\"name\":\"Journal of Grid Computing\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grid Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-024-09748-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09748-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着技术的快速发展,车联网(IoV)变得越来越重要。然而,随着高速公路上车辆数量的增加,确保车辆之间的可靠通信已成为一项重大挑战。为解决这一问题,本文提出了一种新方法,将非正交多址接入(NOMA)与基于最优停车理论(OST)原理的时间优化多任务卸载模型相结合。NOMA-OST 是一种很有前途的技术,可以解决物联网中的大量多路访问和可靠通信需求。本文提出了一种基于 NOMA-OST 的物联网系统,以满足车对车(V2V)通信的要求。这种方法优化了多个用户、任务和服务器的联合任务卸载和资源分配。NOMA 可通过容纳多个设备实现高效的资源共享,而 OST 可确保及时、智能的任务卸载决策,从而提高 IoV 中 V2V 通信的可靠性和效率,使其成为一种极具创新性且技术稳健的解决方案。它为子信道分配提出了一种低复杂度的次优匹配方法,以提高卸载的有效性。仿真结果表明,采用 OST 的 NOMA 能显著提高系统能效(EE)并减少计算时间。该方法还提高了任务卸载和资源分配的有效性,从而改善了系统的整体性能。与传统的正交多址方法相比,采用 OST 的 NOMA 在物联网 V2V 通信要求下的性能有了显著提高。总之,带有 OST 的 NOMA 是一种很有前途的技术,可以满足物联网中 V2V 通信的高可靠性要求。它可以提高系统性能和能效,减少计算时间,是物联网应用的一项有价值的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Task Offloading and Multi-Task Offloading Based on NOMA Enhanced Internet of Vehicles in Edge Computing

With the rapid development of technology, the Internet of vehicles (IoV) has become increasingly important. However, as the number of vehicles on highways increases, ensuring reliable communication between them has become a significant challenge. To address this issue, this paper proposes a novel approach that combines Non-Orthogonal Multiple Access (NOMA) with a time-optimized multitask offloading model based on Optimal Stopping Theory (OST) principles. NOMA-OST is a promising technology that can address the high volume of multiple access and the need for reliable communication in IoV. A NOMA-OST-based IoV system is proposed to meet the Vehicle-to-Vehicle (V2V) communication requirements. This approach optimizes joint task offloading and resource allocation for multiple users, tasks, and servers. NOMA enables efficient resource sharing by accommodating multiple devices, whereas OST ensures timely and intelligent task offloading decisions, resulting in improved reliability and efficiency in V2V communication within IoV, making it a highly innovative and technically robust solution. It suggests a low-complexity sub-optimal matching approach for sub-channel allocation to increase the effectiveness of offloading. Simulation results show that NOMA with OST significantly improves the system’s energy efficiency (EE) and reduces computation time. The approach also enhances the effectiveness of task offloading and resource allocation, leading to better overall system performance. The performance of NOMA with OST under V2V communication requirements in IoV is significantly improved compared to traditional orthogonal multiaccess methods. Overall, NOMA with OST is a promising technology that can address the high reliability of V2V communication requirements in IoV. It can improve system performance, and energy efficiency and reduce computation time, making it a valuable technology for IoV applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Grid Computing
Journal of Grid Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
8.70
自引率
9.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures. Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信