{"title":"不确定优化中稳健弱效率解的最优条件","authors":"Yuwen Zhai, Qilin Wang, Tian Tang, Maoyuan Lv","doi":"10.1007/s11590-023-02085-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we find the flimsily robust weakly efficient solution to the uncertain vector optimization problem by means of the weighted sum scalarization method and strictly robust counterpart. In addition, we introduce a higher-order weak upper inner Studniarski epiderivative of set-valued maps, and obtain two properties of the new notion under the assumption of the star-shaped set. Finally, by applying the higher-order weak upper inner Studniarski epiderivative, we obtain a sufficient and necessary optimality condition of the vector-based robust weakly efficient solution to an uncertain vector optimization problem under the condition of the higher-order strictly generalized cone convexity. As applications, the corresponding optimality conditions of the robust (weakly) Pareto solutions are obtained by the current methods.</p>","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"88 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality conditions for robust weakly efficient solutions in uncertain optimization\",\"authors\":\"Yuwen Zhai, Qilin Wang, Tian Tang, Maoyuan Lv\",\"doi\":\"10.1007/s11590-023-02085-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we find the flimsily robust weakly efficient solution to the uncertain vector optimization problem by means of the weighted sum scalarization method and strictly robust counterpart. In addition, we introduce a higher-order weak upper inner Studniarski epiderivative of set-valued maps, and obtain two properties of the new notion under the assumption of the star-shaped set. Finally, by applying the higher-order weak upper inner Studniarski epiderivative, we obtain a sufficient and necessary optimality condition of the vector-based robust weakly efficient solution to an uncertain vector optimization problem under the condition of the higher-order strictly generalized cone convexity. As applications, the corresponding optimality conditions of the robust (weakly) Pareto solutions are obtained by the current methods.</p>\",\"PeriodicalId\":49720,\"journal\":{\"name\":\"Optimization Letters\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-023-02085-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-023-02085-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimality conditions for robust weakly efficient solutions in uncertain optimization
In this paper, we find the flimsily robust weakly efficient solution to the uncertain vector optimization problem by means of the weighted sum scalarization method and strictly robust counterpart. In addition, we introduce a higher-order weak upper inner Studniarski epiderivative of set-valued maps, and obtain two properties of the new notion under the assumption of the star-shaped set. Finally, by applying the higher-order weak upper inner Studniarski epiderivative, we obtain a sufficient and necessary optimality condition of the vector-based robust weakly efficient solution to an uncertain vector optimization problem under the condition of the higher-order strictly generalized cone convexity. As applications, the corresponding optimality conditions of the robust (weakly) Pareto solutions are obtained by the current methods.
期刊介绍:
Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published.
Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field.
Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.