关于几乎赫米蒂几何中斜面子曼形体的新见解

IF 0.7 2区 数学 Q2 MATHEMATICS
Adara M. Blaga
{"title":"关于几乎赫米蒂几何中斜面子曼形体的新见解","authors":"Adara M. Blaga","doi":"10.1007/s13348-024-00432-0","DOIUrl":null,"url":null,"abstract":"<p>We provide the necessary and sufficient condition for a pointwise slant submanifold with respect to two anti-commuting almost Hermitian structures to be also pointwise slant with respect to a family of almost Hermitian structures generated by them. On the other hand, we show that the property of being pointwise slant is transitive on a class of proper pointwise slant immersed submanifolds of almost Hermitian manifolds. We illustrate the results with suitable examples.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insights on slant submanifolds in almost Hermitian geometry\",\"authors\":\"Adara M. Blaga\",\"doi\":\"10.1007/s13348-024-00432-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide the necessary and sufficient condition for a pointwise slant submanifold with respect to two anti-commuting almost Hermitian structures to be also pointwise slant with respect to a family of almost Hermitian structures generated by them. On the other hand, we show that the property of being pointwise slant is transitive on a class of proper pointwise slant immersed submanifolds of almost Hermitian manifolds. We illustrate the results with suitable examples.</p>\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-024-00432-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-024-00432-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个必要且充分的条件,即相对于两个反交的近乎赫米蒂结构的点斜子曼形体,相对于由它们生成的近乎赫米蒂结构族也是点斜的。另一方面,我们证明了在几乎赫米蒂流形的一类适当的点斜沉浸子流形上,点斜属性是传递性的。我们用合适的例子来说明这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New insights on slant submanifolds in almost Hermitian geometry

We provide the necessary and sufficient condition for a pointwise slant submanifold with respect to two anti-commuting almost Hermitian structures to be also pointwise slant with respect to a family of almost Hermitian structures generated by them. On the other hand, we show that the property of being pointwise slant is transitive on a class of proper pointwise slant immersed submanifolds of almost Hermitian manifolds. We illustrate the results with suitable examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信