非结构化有限体积法中梯度方案的通用表述方法

Mandeep Deka, Ashwani Assam, Ganesh Natarajan
{"title":"非结构化有限体积法中梯度方案的通用表述方法","authors":"Mandeep Deka, Ashwani Assam, Ganesh Natarajan","doi":"arxiv-2402.06199","DOIUrl":null,"url":null,"abstract":"We present a generic framework for gradient reconstruction schemes on\nunstructured meshes using the notion of a dyadic sum-vector product. The\nproposed formulation reconstructs centroidal gradients of a scalar from its\ndirectional derivatives along specific directions in a suitably defined\nneighbourhood. We show that existing gradient reconstruction schemes can be\nencompassed within this framework by a suitable choice of the geometric vectors\nthat define the dyadic sum tensor. The proposed framework also allows us to\nre-interpret certain hybrid schemes, which might not be derivable through\ntraditional routes. Additionally, a generalization of flexible gradient schemes\nis proposed that can be employed to enhance the robustness of consistent\ngradient schemes without compromising on the accuracy of the computed\ngradients.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized formulation for gradient schemes in unstructured finite volume method\",\"authors\":\"Mandeep Deka, Ashwani Assam, Ganesh Natarajan\",\"doi\":\"arxiv-2402.06199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a generic framework for gradient reconstruction schemes on\\nunstructured meshes using the notion of a dyadic sum-vector product. The\\nproposed formulation reconstructs centroidal gradients of a scalar from its\\ndirectional derivatives along specific directions in a suitably defined\\nneighbourhood. We show that existing gradient reconstruction schemes can be\\nencompassed within this framework by a suitable choice of the geometric vectors\\nthat define the dyadic sum tensor. The proposed framework also allows us to\\nre-interpret certain hybrid schemes, which might not be derivable through\\ntraditional routes. Additionally, a generalization of flexible gradient schemes\\nis proposed that can be employed to enhance the robustness of consistent\\ngradient schemes without compromising on the accuracy of the computed\\ngradients.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.06199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.06199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用二元和-矢量乘的概念,为非结构网格上的梯度重建方案提出了一个通用框架。所提出的方案是通过标量沿特定方向的方向导数,在适当定义的邻域内重建标量的中心梯度。我们证明,通过适当选择定义二元和张量的几何向量,现有的梯度重建方案可以在此框架内进行。所提出的框架还允许我们重新解释某些混合方案,这些方案可能无法通过传统途径推导出来。此外,我们还提出了一种灵活梯度方案的广义,可以用来增强一致梯度方案的稳健性,而不会影响计算梯度的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized formulation for gradient schemes in unstructured finite volume method
We present a generic framework for gradient reconstruction schemes on unstructured meshes using the notion of a dyadic sum-vector product. The proposed formulation reconstructs centroidal gradients of a scalar from its directional derivatives along specific directions in a suitably defined neighbourhood. We show that existing gradient reconstruction schemes can be encompassed within this framework by a suitable choice of the geometric vectors that define the dyadic sum tensor. The proposed framework also allows us to re-interpret certain hybrid schemes, which might not be derivable through traditional routes. Additionally, a generalization of flexible gradient schemes is proposed that can be employed to enhance the robustness of consistent gradient schemes without compromising on the accuracy of the computed gradients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信