HAMLET:偏微分方程图变换器神经算子

Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, Angelica Aviles-Rivero
{"title":"HAMLET:偏微分方程图变换器神经算子","authors":"Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, Angelica Aviles-Rivero","doi":"arxiv-2402.03541","DOIUrl":null,"url":null,"abstract":"We present a novel graph transformer framework, HAMLET, designed to address\nthe challenges in solving partial differential equations (PDEs) using neural\nnetworks. The framework uses graph transformers with modular input encoders to\ndirectly incorporate differential equation information into the solution\nprocess. This modularity enhances parameter correspondence control, making\nHAMLET adaptable to PDEs of arbitrary geometries and varied input formats.\nNotably, HAMLET scales effectively with increasing data complexity and noise,\nshowcasing its robustness. HAMLET is not just tailored to a single type of\nphysical simulation, but can be applied across various domains. Moreover, it\nboosts model resilience and performance, especially in scenarios with limited\ndata. We demonstrate, through extensive experiments, that our framework is\ncapable of outperforming current techniques for PDEs.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HAMLET: Graph Transformer Neural Operator for Partial Differential Equations\",\"authors\":\"Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, Angelica Aviles-Rivero\",\"doi\":\"arxiv-2402.03541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel graph transformer framework, HAMLET, designed to address\\nthe challenges in solving partial differential equations (PDEs) using neural\\nnetworks. The framework uses graph transformers with modular input encoders to\\ndirectly incorporate differential equation information into the solution\\nprocess. This modularity enhances parameter correspondence control, making\\nHAMLET adaptable to PDEs of arbitrary geometries and varied input formats.\\nNotably, HAMLET scales effectively with increasing data complexity and noise,\\nshowcasing its robustness. HAMLET is not just tailored to a single type of\\nphysical simulation, but can be applied across various domains. Moreover, it\\nboosts model resilience and performance, especially in scenarios with limited\\ndata. We demonstrate, through extensive experiments, that our framework is\\ncapable of outperforming current techniques for PDEs.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.03541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.03541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新颖的图转换器框架 HAMLET,旨在解决使用神经网络求解偏微分方程(PDE)时遇到的难题。该框架使用带有模块化输入编码器的图变换器,直接将微分方程信息纳入求解过程。这种模块化增强了参数对应控制,使 HAMLET 能够适应任意几何形状和各种输入格式的 PDE。HAMLET 不仅适用于单一类型的物理仿真,还可应用于各种领域。此外,它还能提高模型的弹性和性能,尤其是在数据有限的情况下。我们通过大量实验证明,我们的框架能够超越当前的 PDE 技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HAMLET: Graph Transformer Neural Operator for Partial Differential Equations
We present a novel graph transformer framework, HAMLET, designed to address the challenges in solving partial differential equations (PDEs) using neural networks. The framework uses graph transformers with modular input encoders to directly incorporate differential equation information into the solution process. This modularity enhances parameter correspondence control, making HAMLET adaptable to PDEs of arbitrary geometries and varied input formats. Notably, HAMLET scales effectively with increasing data complexity and noise, showcasing its robustness. HAMLET is not just tailored to a single type of physical simulation, but can be applied across various domains. Moreover, it boosts model resilience and performance, especially in scenarios with limited data. We demonstrate, through extensive experiments, that our framework is capable of outperforming current techniques for PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信