{"title":"HAMLET:偏微分方程图变换器神经算子","authors":"Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, Angelica Aviles-Rivero","doi":"arxiv-2402.03541","DOIUrl":null,"url":null,"abstract":"We present a novel graph transformer framework, HAMLET, designed to address\nthe challenges in solving partial differential equations (PDEs) using neural\nnetworks. The framework uses graph transformers with modular input encoders to\ndirectly incorporate differential equation information into the solution\nprocess. This modularity enhances parameter correspondence control, making\nHAMLET adaptable to PDEs of arbitrary geometries and varied input formats.\nNotably, HAMLET scales effectively with increasing data complexity and noise,\nshowcasing its robustness. HAMLET is not just tailored to a single type of\nphysical simulation, but can be applied across various domains. Moreover, it\nboosts model resilience and performance, especially in scenarios with limited\ndata. We demonstrate, through extensive experiments, that our framework is\ncapable of outperforming current techniques for PDEs.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HAMLET: Graph Transformer Neural Operator for Partial Differential Equations\",\"authors\":\"Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, Angelica Aviles-Rivero\",\"doi\":\"arxiv-2402.03541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel graph transformer framework, HAMLET, designed to address\\nthe challenges in solving partial differential equations (PDEs) using neural\\nnetworks. The framework uses graph transformers with modular input encoders to\\ndirectly incorporate differential equation information into the solution\\nprocess. This modularity enhances parameter correspondence control, making\\nHAMLET adaptable to PDEs of arbitrary geometries and varied input formats.\\nNotably, HAMLET scales effectively with increasing data complexity and noise,\\nshowcasing its robustness. HAMLET is not just tailored to a single type of\\nphysical simulation, but can be applied across various domains. Moreover, it\\nboosts model resilience and performance, especially in scenarios with limited\\ndata. We demonstrate, through extensive experiments, that our framework is\\ncapable of outperforming current techniques for PDEs.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.03541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.03541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一个新颖的图转换器框架 HAMLET,旨在解决使用神经网络求解偏微分方程(PDE)时遇到的难题。该框架使用带有模块化输入编码器的图变换器,直接将微分方程信息纳入求解过程。这种模块化增强了参数对应控制,使 HAMLET 能够适应任意几何形状和各种输入格式的 PDE。HAMLET 不仅适用于单一类型的物理仿真,还可应用于各种领域。此外,它还能提高模型的弹性和性能,尤其是在数据有限的情况下。我们通过大量实验证明,我们的框架能够超越当前的 PDE 技术。
HAMLET: Graph Transformer Neural Operator for Partial Differential Equations
We present a novel graph transformer framework, HAMLET, designed to address
the challenges in solving partial differential equations (PDEs) using neural
networks. The framework uses graph transformers with modular input encoders to
directly incorporate differential equation information into the solution
process. This modularity enhances parameter correspondence control, making
HAMLET adaptable to PDEs of arbitrary geometries and varied input formats.
Notably, HAMLET scales effectively with increasing data complexity and noise,
showcasing its robustness. HAMLET is not just tailored to a single type of
physical simulation, but can be applied across various domains. Moreover, it
boosts model resilience and performance, especially in scenarios with limited
data. We demonstrate, through extensive experiments, that our framework is
capable of outperforming current techniques for PDEs.