相对论旋转紧凑体的交映力学 II: 施瓦兹柴尔德时空中的经典形式主义

Paul Ramond, Soichiro Isoyama
{"title":"相对论旋转紧凑体的交映力学 II: 施瓦兹柴尔德时空中的经典形式主义","authors":"Paul Ramond, Soichiro Isoyama","doi":"arxiv-2402.05049","DOIUrl":null,"url":null,"abstract":"This work is the second part in a series aiming at exploiting tools from\nHamiltonian mechanics to study the motion of an extended body in general\nrelativity. In the first part of this work, we constructed a 10-dimensional,\ncovariant Hamiltonian framework that encodes all the linear-in-spin corrections\nto the geodesic motion. This formulation, although non-canonical, revealed\nthat, at this linear-in-spin order, the integrability of Schwarzschild and Kerr\ngeodesics remain. Building on this formalism, in the present work, we translate\nthis abstract integrability result into tangible applications for\nlinear-in-spin dynamics of a compact object into a Schwarzschild background\nspacetime. In particular, we construct a canonical system of coordinates which\nexploits the spherical symmetry of the Schwarzschild spacetime. They are based\non a relativistic generalization of the classical Andoyer variables of\nNewtonian rigid body motion. This canonical setup, then, allows us to derive\nready-to-use formulae for action-angle coordinates and gauge-invariant\nHamiltonian frequencies, which automatically include all linear-in-spin\neffects. No external parameters or ad hoc choices are necessary, and the\nframework can be used to find complete solutions by quadrature of generic,\nbound, linear-in-spin orbits, including orbital inclination, precession and\neccentricity, as well as spin precession. We demonstrate the strength of the\nformalism in the simple setting of circular orbits with arbitrary spin and\norbital precession, and validate them against known results in the literature.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic mechanics of relativistic spinning compact bodies II.: Canonical formalism in the Schwarzschild spacetime\",\"authors\":\"Paul Ramond, Soichiro Isoyama\",\"doi\":\"arxiv-2402.05049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is the second part in a series aiming at exploiting tools from\\nHamiltonian mechanics to study the motion of an extended body in general\\nrelativity. In the first part of this work, we constructed a 10-dimensional,\\ncovariant Hamiltonian framework that encodes all the linear-in-spin corrections\\nto the geodesic motion. This formulation, although non-canonical, revealed\\nthat, at this linear-in-spin order, the integrability of Schwarzschild and Kerr\\ngeodesics remain. Building on this formalism, in the present work, we translate\\nthis abstract integrability result into tangible applications for\\nlinear-in-spin dynamics of a compact object into a Schwarzschild background\\nspacetime. In particular, we construct a canonical system of coordinates which\\nexploits the spherical symmetry of the Schwarzschild spacetime. They are based\\non a relativistic generalization of the classical Andoyer variables of\\nNewtonian rigid body motion. This canonical setup, then, allows us to derive\\nready-to-use formulae for action-angle coordinates and gauge-invariant\\nHamiltonian frequencies, which automatically include all linear-in-spin\\neffects. No external parameters or ad hoc choices are necessary, and the\\nframework can be used to find complete solutions by quadrature of generic,\\nbound, linear-in-spin orbits, including orbital inclination, precession and\\neccentricity, as well as spin precession. We demonstrate the strength of the\\nformalism in the simple setting of circular orbits with arbitrary spin and\\norbital precession, and validate them against known results in the literature.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.05049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.05049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作是利用哈密顿力学工具研究广义相对论中的延伸体运动系列工作的第二部分。在这项工作的第一部分,我们构建了一个 10 维的协变哈密顿框架,其中包含了对大地运动的所有线性自旋修正。这种表述虽然不规范,但揭示了在这种线性-自旋阶数下,施瓦兹柴尔德和克尔测地线的可积分性依然存在。在这一形式主义的基础上,我们在本研究中将这一抽象的可积分性结果转化为紧凑物体在施瓦兹柴尔德背景时空中的线性-内旋动力学的实际应用。特别是,我们利用施瓦兹柴尔德时空的球面对称性构建了一个典型坐标系。它们是基于牛顿刚体运动的经典安多耶变量的相对论广义化。因此,这种典型设置使我们能够推导出易于使用的作用角坐标和轨距不变哈密顿频率公式,这些公式自动包含了所有线性脊柱效应。不需要任何外部参数或特别选择,该框架就可以用来通过对一般的、有约束的、线性自旋轨道(包括轨道倾角、前冲和同心度,以及自旋前冲)的正交求解找到完整的解。我们在具有任意自旋和轨道前冲的圆形轨道的简单设置中证明了形式主义的强度,并与文献中的已知结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic mechanics of relativistic spinning compact bodies II.: Canonical formalism in the Schwarzschild spacetime
This work is the second part in a series aiming at exploiting tools from Hamiltonian mechanics to study the motion of an extended body in general relativity. In the first part of this work, we constructed a 10-dimensional, covariant Hamiltonian framework that encodes all the linear-in-spin corrections to the geodesic motion. This formulation, although non-canonical, revealed that, at this linear-in-spin order, the integrability of Schwarzschild and Kerr geodesics remain. Building on this formalism, in the present work, we translate this abstract integrability result into tangible applications for linear-in-spin dynamics of a compact object into a Schwarzschild background spacetime. In particular, we construct a canonical system of coordinates which exploits the spherical symmetry of the Schwarzschild spacetime. They are based on a relativistic generalization of the classical Andoyer variables of Newtonian rigid body motion. This canonical setup, then, allows us to derive ready-to-use formulae for action-angle coordinates and gauge-invariant Hamiltonian frequencies, which automatically include all linear-in-spin effects. No external parameters or ad hoc choices are necessary, and the framework can be used to find complete solutions by quadrature of generic, bound, linear-in-spin orbits, including orbital inclination, precession and eccentricity, as well as spin precession. We demonstrate the strength of the formalism in the simple setting of circular orbits with arbitrary spin and orbital precession, and validate them against known results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信