立方均场伊辛模型的极限定理

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Pierluigi Contucci, Emanuele Mingione, Godwin Osabutey
{"title":"立方均场伊辛模型的极限定理","authors":"Pierluigi Contucci,&nbsp;Emanuele Mingione,&nbsp;Godwin Osabutey","doi":"10.1007/s00023-024-01420-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study a mean-field spin model with three- and two-body interactions. The equilibrium measure for large volumes is shown to have three pure states, the phases of the model. They include the two with opposite magnetization and an unpolarized one with zero magnetization, merging at the critical point. We prove that the central limit theorem holds for a suitably rescaled magnetization, while its violation with the typical quartic behavior appears at the critical point.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 11","pages":"5019 - 5044"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01420-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Limit Theorems for the Cubic Mean-Field Ising Model\",\"authors\":\"Pierluigi Contucci,&nbsp;Emanuele Mingione,&nbsp;Godwin Osabutey\",\"doi\":\"10.1007/s00023-024-01420-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a mean-field spin model with three- and two-body interactions. The equilibrium measure for large volumes is shown to have three pure states, the phases of the model. They include the two with opposite magnetization and an unpolarized one with zero magnetization, merging at the critical point. We prove that the central limit theorem holds for a suitably rescaled magnetization, while its violation with the typical quartic behavior appears at the critical point.\\n</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 11\",\"pages\":\"5019 - 5044\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-024-01420-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01420-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01420-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了一个具有三体和二体相互作用的均场自旋模型。研究表明,大体积的平衡度量有三个纯态,即模型的三个阶段。它们包括两种磁化相反的状态和一种磁化为零的非极化状态,并在临界点合并。我们证明了中心极限定理在适当重标磁化时成立,而在临界点则出现了典型的四分行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit Theorems for the Cubic Mean-Field Ising Model

We study a mean-field spin model with three- and two-body interactions. The equilibrium measure for large volumes is shown to have three pure states, the phases of the model. They include the two with opposite magnetization and an unpolarized one with zero magnetization, merging at the critical point. We prove that the central limit theorem holds for a suitably rescaled magnetization, while its violation with the typical quartic behavior appears at the critical point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信