Wei Wang, Min Wan, Ming Li, Ciren Mima, Tao Wang, Haozhong Zhong
{"title":"量化城市化对中国北部雄安新区湿沉降的影响","authors":"Wei Wang, Min Wan, Ming Li, Ciren Mima, Tao Wang, Haozhong Zhong","doi":"10.1111/wej.12919","DOIUrl":null,"url":null,"abstract":"Xiong'an New Area (XNA) in China is undergoing rapid urbanization due to economic development and population growth. However, the urbanization process can significantly impact the local environment. This study applied a combined method of Weather Research and Forecasting (WRF) and empirical calculations to quantitatively identify changes in precipitation and wet deposition over XNA and its internal lake, Baiyangdian (BYD), during the summer months of June to September. Five different urbanization scenarios were established by varying the WRF subsurface conditions. By comparing these scenarios with historical observations, it was found that WRF simulations could effectively reproduce the precipitation and temperature changes in the region. This study examined how different levels of urbanization affect precipitation and estimated changes in PM<sub>2.5</sub> wet deposition. The study's results indicate that as urbanization increases, it leads to an increase in precipitation and wet deposition in the XNA region. Using the relatively low urbanization level in 1980 as a benchmark for comparison, it was observed that when XNA becomes fully urbanized, the increase in precipitation and wet deposition in the region exceeds 7%. The BYD Lake can have a moderating effect on the environment, absorbing more than 50% of the local precipitation and PM<sub>2.5</sub> wet deposition with less than 25% of its area, compared to the XNA interval of the statistics, while the increase in wet deposition in the BYD Lake area is more than 4% after full urbanization in XNA. The findings also emphasize the importance of the need to balance economic growth and environmental protection in urban planning and development.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"117 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the impact of urbanization on wet deposition over Xiong'an New Area in northern China\",\"authors\":\"Wei Wang, Min Wan, Ming Li, Ciren Mima, Tao Wang, Haozhong Zhong\",\"doi\":\"10.1111/wej.12919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Xiong'an New Area (XNA) in China is undergoing rapid urbanization due to economic development and population growth. However, the urbanization process can significantly impact the local environment. This study applied a combined method of Weather Research and Forecasting (WRF) and empirical calculations to quantitatively identify changes in precipitation and wet deposition over XNA and its internal lake, Baiyangdian (BYD), during the summer months of June to September. Five different urbanization scenarios were established by varying the WRF subsurface conditions. By comparing these scenarios with historical observations, it was found that WRF simulations could effectively reproduce the precipitation and temperature changes in the region. This study examined how different levels of urbanization affect precipitation and estimated changes in PM<sub>2.5</sub> wet deposition. The study's results indicate that as urbanization increases, it leads to an increase in precipitation and wet deposition in the XNA region. Using the relatively low urbanization level in 1980 as a benchmark for comparison, it was observed that when XNA becomes fully urbanized, the increase in precipitation and wet deposition in the region exceeds 7%. The BYD Lake can have a moderating effect on the environment, absorbing more than 50% of the local precipitation and PM<sub>2.5</sub> wet deposition with less than 25% of its area, compared to the XNA interval of the statistics, while the increase in wet deposition in the BYD Lake area is more than 4% after full urbanization in XNA. The findings also emphasize the importance of the need to balance economic growth and environmental protection in urban planning and development.\",\"PeriodicalId\":23753,\"journal\":{\"name\":\"Water and Environment Journal\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water and Environment Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/wej.12919\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12919","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantifying the impact of urbanization on wet deposition over Xiong'an New Area in northern China
Xiong'an New Area (XNA) in China is undergoing rapid urbanization due to economic development and population growth. However, the urbanization process can significantly impact the local environment. This study applied a combined method of Weather Research and Forecasting (WRF) and empirical calculations to quantitatively identify changes in precipitation and wet deposition over XNA and its internal lake, Baiyangdian (BYD), during the summer months of June to September. Five different urbanization scenarios were established by varying the WRF subsurface conditions. By comparing these scenarios with historical observations, it was found that WRF simulations could effectively reproduce the precipitation and temperature changes in the region. This study examined how different levels of urbanization affect precipitation and estimated changes in PM2.5 wet deposition. The study's results indicate that as urbanization increases, it leads to an increase in precipitation and wet deposition in the XNA region. Using the relatively low urbanization level in 1980 as a benchmark for comparison, it was observed that when XNA becomes fully urbanized, the increase in precipitation and wet deposition in the region exceeds 7%. The BYD Lake can have a moderating effect on the environment, absorbing more than 50% of the local precipitation and PM2.5 wet deposition with less than 25% of its area, compared to the XNA interval of the statistics, while the increase in wet deposition in the BYD Lake area is more than 4% after full urbanization in XNA. The findings also emphasize the importance of the need to balance economic growth and environmental protection in urban planning and development.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure