Lydia Abady, Mauro Barni, Andrea Garzelli, Benedetta Tondi
{"title":"基于合成生成对抗网络生成清晰度更高的多光谱卫星图像","authors":"Lydia Abady, Mauro Barni, Andrea Garzelli, Benedetta Tondi","doi":"10.1117/1.jrs.18.014510","DOIUrl":null,"url":null,"abstract":"The generation of synthetic multispectral satellite images has not yet reached the quality level achievable in other domains, such as the generation and manipulation of face images. Part of the difficulty stems from the need to generate consistent data across the entire electromagnetic spectrum covered by such images at radiometric resolutions higher than those typically used in multimedia applications. The different spatial resolution of image bands corresponding to different wavelengths poses additional problems, whose main effect is a lack of spatial details in the synthetic images with respect to the original ones. We propose two generative adversarial networks-based architectures explicitly thought to generate synthetic satellite imagery by applying style transfer to 13-band Sentinel-2 level1-C images. To avoid losing the finer spatial details and improve the sharpness of the generated images, we introduce a pansharpening-like approach, whereby the spatial structures of the input image are transferred to the style-transferred images without introducing visible artifacts. The results we got by applying the proposed architectures to transform barren images into vegetation images and vice versa and to transform summer (res. winter) images into winter (res. summer) images, which confirm the validity of the proposed solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of synthetic generative adversarial network-based multispectral satellite images with improved sharpness\",\"authors\":\"Lydia Abady, Mauro Barni, Andrea Garzelli, Benedetta Tondi\",\"doi\":\"10.1117/1.jrs.18.014510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of synthetic multispectral satellite images has not yet reached the quality level achievable in other domains, such as the generation and manipulation of face images. Part of the difficulty stems from the need to generate consistent data across the entire electromagnetic spectrum covered by such images at radiometric resolutions higher than those typically used in multimedia applications. The different spatial resolution of image bands corresponding to different wavelengths poses additional problems, whose main effect is a lack of spatial details in the synthetic images with respect to the original ones. We propose two generative adversarial networks-based architectures explicitly thought to generate synthetic satellite imagery by applying style transfer to 13-band Sentinel-2 level1-C images. To avoid losing the finer spatial details and improve the sharpness of the generated images, we introduce a pansharpening-like approach, whereby the spatial structures of the input image are transferred to the style-transferred images without introducing visible artifacts. The results we got by applying the proposed architectures to transform barren images into vegetation images and vice versa and to transform summer (res. winter) images into winter (res. summer) images, which confirm the validity of the proposed solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014510\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Generation of synthetic generative adversarial network-based multispectral satellite images with improved sharpness
The generation of synthetic multispectral satellite images has not yet reached the quality level achievable in other domains, such as the generation and manipulation of face images. Part of the difficulty stems from the need to generate consistent data across the entire electromagnetic spectrum covered by such images at radiometric resolutions higher than those typically used in multimedia applications. The different spatial resolution of image bands corresponding to different wavelengths poses additional problems, whose main effect is a lack of spatial details in the synthetic images with respect to the original ones. We propose two generative adversarial networks-based architectures explicitly thought to generate synthetic satellite imagery by applying style transfer to 13-band Sentinel-2 level1-C images. To avoid losing the finer spatial details and improve the sharpness of the generated images, we introduce a pansharpening-like approach, whereby the spatial structures of the input image are transferred to the style-transferred images without introducing visible artifacts. The results we got by applying the proposed architectures to transform barren images into vegetation images and vice versa and to transform summer (res. winter) images into winter (res. summer) images, which confirm the validity of the proposed solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.