Kathrin Klamroth, Michael Stiglmayr, Claudia Totzeck
{"title":"基于共识的多目标问题优化:多群方法","authors":"Kathrin Klamroth, Michael Stiglmayr, Claudia Totzeck","doi":"10.1007/s10898-024-01369-1","DOIUrl":null,"url":null,"abstract":"<p>We propose a multi-swarm approach to approximate the Pareto front of general multi-objective optimization problems that is based on the consensus-based optimization method (CBO). The algorithm is motivated step by step beginning with a simple extension of CBO based on fixed scalarization weights. To overcome the issue of choosing the weights we propose an adaptive weight strategy in the second modeling step. The modeling process is concluded with the incorporation of a penalty strategy that avoids clusters along the Pareto front and a diffusion term that prevents collapsing swarms. Altogether the proposed <i>K</i>-swarm CBO algorithm is tailored for a diverse approximation of the Pareto front and, simultaneously, the efficient set of general non-convex multi-objective problems. The feasibility of the approach is justified by analytic results, including convergence proofs, and a performance comparison to the well-known non-dominated sorting genetic algorithms NSGA2 and NSGA3 as well as the recently proposed one-swarm approach for multi-objective problems involving consensus-based optimization.\n</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"14 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus-based optimization for multi-objective problems: a multi-swarm approach\",\"authors\":\"Kathrin Klamroth, Michael Stiglmayr, Claudia Totzeck\",\"doi\":\"10.1007/s10898-024-01369-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a multi-swarm approach to approximate the Pareto front of general multi-objective optimization problems that is based on the consensus-based optimization method (CBO). The algorithm is motivated step by step beginning with a simple extension of CBO based on fixed scalarization weights. To overcome the issue of choosing the weights we propose an adaptive weight strategy in the second modeling step. The modeling process is concluded with the incorporation of a penalty strategy that avoids clusters along the Pareto front and a diffusion term that prevents collapsing swarms. Altogether the proposed <i>K</i>-swarm CBO algorithm is tailored for a diverse approximation of the Pareto front and, simultaneously, the efficient set of general non-convex multi-objective problems. The feasibility of the approach is justified by analytic results, including convergence proofs, and a performance comparison to the well-known non-dominated sorting genetic algorithms NSGA2 and NSGA3 as well as the recently proposed one-swarm approach for multi-objective problems involving consensus-based optimization.\\n</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01369-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01369-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Consensus-based optimization for multi-objective problems: a multi-swarm approach
We propose a multi-swarm approach to approximate the Pareto front of general multi-objective optimization problems that is based on the consensus-based optimization method (CBO). The algorithm is motivated step by step beginning with a simple extension of CBO based on fixed scalarization weights. To overcome the issue of choosing the weights we propose an adaptive weight strategy in the second modeling step. The modeling process is concluded with the incorporation of a penalty strategy that avoids clusters along the Pareto front and a diffusion term that prevents collapsing swarms. Altogether the proposed K-swarm CBO algorithm is tailored for a diverse approximation of the Pareto front and, simultaneously, the efficient set of general non-convex multi-objective problems. The feasibility of the approach is justified by analytic results, including convergence proofs, and a performance comparison to the well-known non-dominated sorting genetic algorithms NSGA2 and NSGA3 as well as the recently proposed one-swarm approach for multi-objective problems involving consensus-based optimization.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.