多目标最小权重最小拉伸扳手问题的复杂性

Pub Date : 2024-02-15 DOI:10.1007/s00186-024-00850-7
Fritz Bökler, Henning Jasper
{"title":"多目标最小权重最小拉伸扳手问题的复杂性","authors":"Fritz Bökler, Henning Jasper","doi":"10.1007/s00186-024-00850-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we take an in-depth look at the complexity of a hitherto unexplored <i>multiobjective minimum weight minimum stretch spanner</i> problem; or in short <i>multiobjective spanner (MSp)</i> problem. The MSp is a multiobjective generalization of the well-studied minimum t-spanner problem. This multiobjective approach allows to find solutions that offer a viable compromise between cost and utility—a property that is usually neglected in singleobjective optimization. Thus, the MSp can be a powerful modeling tool when it comes to, e.g., the planning of transportation or communication networks. This holds especially in disaster management, where both responsiveness and practicality are crucial. We show that for degree-3 bounded outerplanar instances the MSp is intractable and computing the non-dominated set is <b>BUCO</b>-hard. Additionally, we prove that if <span>\\({\\textbf{P}} \\ne \\textbf{NP}\\)</span>, the set of extreme points cannot be computed in output-polynomial time, for instances with unit costs and arbitrary graphs. Furthermore, we consider the directed versions of the cases above.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of the multiobjective minimum weight minimum stretch spanner problem\",\"authors\":\"Fritz Bökler, Henning Jasper\",\"doi\":\"10.1007/s00186-024-00850-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we take an in-depth look at the complexity of a hitherto unexplored <i>multiobjective minimum weight minimum stretch spanner</i> problem; or in short <i>multiobjective spanner (MSp)</i> problem. The MSp is a multiobjective generalization of the well-studied minimum t-spanner problem. This multiobjective approach allows to find solutions that offer a viable compromise between cost and utility—a property that is usually neglected in singleobjective optimization. Thus, the MSp can be a powerful modeling tool when it comes to, e.g., the planning of transportation or communication networks. This holds especially in disaster management, where both responsiveness and practicality are crucial. We show that for degree-3 bounded outerplanar instances the MSp is intractable and computing the non-dominated set is <b>BUCO</b>-hard. Additionally, we prove that if <span>\\\\({\\\\textbf{P}} \\\\ne \\\\textbf{NP}\\\\)</span>, the set of extreme points cannot be computed in output-polynomial time, for instances with unit costs and arbitrary graphs. Furthermore, we consider the directed versions of the cases above.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00186-024-00850-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00186-024-00850-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们深入探讨了迄今为止尚未探索过的多目标最小权重最小拉伸扳手问题(简称多目标扳手(MSp)问题)的复杂性。MSp 是对研究得很透彻的最小 tspanner 问题的多目标概括。通过这种多目标方法,可以找到在成本和效用之间达成可行折衷的解决方案--这种特性在单目标优化中通常会被忽视。因此,在交通或通信网络规划等方面,MSp 可以成为一个强大的建模工具。这一点在灾难管理中尤为重要,因为在灾难管理中,响应速度和实用性都至关重要。我们的研究表明,对于度数为 3 的有界外平面实例,MSp 是难以处理的,而且计算非支配集也是 BUCO 难的。此外,我们还证明,如果 \({\textbf{P}} \ne \textbf{NP}/),那么对于具有单位成本和任意图的实例,极值点集无法在输出-多项式时间内计算。此外,我们还考虑了上述情况的有向版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Complexity of the multiobjective minimum weight minimum stretch spanner problem

分享
查看原文
Complexity of the multiobjective minimum weight minimum stretch spanner problem

In this paper, we take an in-depth look at the complexity of a hitherto unexplored multiobjective minimum weight minimum stretch spanner problem; or in short multiobjective spanner (MSp) problem. The MSp is a multiobjective generalization of the well-studied minimum t-spanner problem. This multiobjective approach allows to find solutions that offer a viable compromise between cost and utility—a property that is usually neglected in singleobjective optimization. Thus, the MSp can be a powerful modeling tool when it comes to, e.g., the planning of transportation or communication networks. This holds especially in disaster management, where both responsiveness and practicality are crucial. We show that for degree-3 bounded outerplanar instances the MSp is intractable and computing the non-dominated set is BUCO-hard. Additionally, we prove that if \({\textbf{P}} \ne \textbf{NP}\), the set of extreme points cannot be computed in output-polynomial time, for instances with unit costs and arbitrary graphs. Furthermore, we consider the directed versions of the cases above.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信