微分历史变分-半变量不等式在动态接触问题中的应用

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Abderrahmane Oultou, Zakaria Faiz, Othmane Baiz, Hicham Benaissa
{"title":"微分历史变分-半变量不等式在动态接触问题中的应用","authors":"Abderrahmane Oultou,&nbsp;Zakaria Faiz,&nbsp;Othmane Baiz,&nbsp;Hicham Benaissa","doi":"10.1007/s10440-024-00637-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is dedicated to the discussion of a new dynamical system involving a history-dependent variational-hemivariational inequality coupled with a non-linear evolution equation. The existence and uniqueness of the solution to this problem are established using the Rothe method and a surjectivity result for a pseudo-monotone perturbation of a maximal operator. Additionally, we derive the regularity solution for such a history-dependent variational-hemivariational inequality. Furthermore, the main results obtained in this study are applied to investigate the unique solvability of a dynamical viscoelastic frictional contact problem with long memory and wear.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"189 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential History-Dependent Variational-Hemivariational Inequality with Application to a Dynamic Contact Problem\",\"authors\":\"Abderrahmane Oultou,&nbsp;Zakaria Faiz,&nbsp;Othmane Baiz,&nbsp;Hicham Benaissa\",\"doi\":\"10.1007/s10440-024-00637-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is dedicated to the discussion of a new dynamical system involving a history-dependent variational-hemivariational inequality coupled with a non-linear evolution equation. The existence and uniqueness of the solution to this problem are established using the Rothe method and a surjectivity result for a pseudo-monotone perturbation of a maximal operator. Additionally, we derive the regularity solution for such a history-dependent variational-hemivariational inequality. Furthermore, the main results obtained in this study are applied to investigate the unique solvability of a dynamical viscoelastic frictional contact problem with long memory and wear.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00637-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00637-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于讨论一个新的动力系统,该系统涉及一个与历史相关的变分-半变量不等式和一个非线性演化方程。我们利用罗特方法和最大算子伪单调扰动的可射性结果,确定了该问题解的存在性和唯一性。此外,我们还推导出了这种依赖历史的变分-半变分不等式的正则解。此外,本研究获得的主要结果还被应用于研究具有长记忆和磨损的动态粘弹性摩擦接触问题的唯一可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential History-Dependent Variational-Hemivariational Inequality with Application to a Dynamic Contact Problem

This paper is dedicated to the discussion of a new dynamical system involving a history-dependent variational-hemivariational inequality coupled with a non-linear evolution equation. The existence and uniqueness of the solution to this problem are established using the Rothe method and a surjectivity result for a pseudo-monotone perturbation of a maximal operator. Additionally, we derive the regularity solution for such a history-dependent variational-hemivariational inequality. Furthermore, the main results obtained in this study are applied to investigate the unique solvability of a dynamical viscoelastic frictional contact problem with long memory and wear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信