负曲率中的 Diophantine 近似、大交点和测地线

IF 1.5 1区 数学 Q1 MATHEMATICS
Anish Ghosh, Debanjan Nandi
{"title":"负曲率中的 Diophantine 近似、大交点和测地线","authors":"Anish Ghosh, Debanjan Nandi","doi":"10.1112/plms.12581","DOIUrl":null,"url":null,"abstract":"In this paper, we prove quantitative results about geodesic approximations to submanifolds in negatively curved spaces. Among the main tools is a new and general Jarník–Besicovitch type theorem in Diophantine approximation. Our framework allows manifolds of variable negative curvature, a variety of geometric targets, and logarithm laws as well as spiraling phenomena in both measure and dimension aspect. Several of the results are new also for manifolds of constant negative sectional curvature. We further establish a large intersection property of Falconer in this context.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diophantine approximation, large intersections and geodesics in negative curvature\",\"authors\":\"Anish Ghosh, Debanjan Nandi\",\"doi\":\"10.1112/plms.12581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove quantitative results about geodesic approximations to submanifolds in negatively curved spaces. Among the main tools is a new and general Jarník–Besicovitch type theorem in Diophantine approximation. Our framework allows manifolds of variable negative curvature, a variety of geometric targets, and logarithm laws as well as spiraling phenomena in both measure and dimension aspect. Several of the results are new also for manifolds of constant negative sectional curvature. We further establish a large intersection property of Falconer in this context.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12581\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12581","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了关于负弯曲空间中子线面的大地近似的定量结果。其中的主要工具是 Diophantine approximation 中新的通用 Jarník-Besicovitch 型定理。我们的框架允许可变负曲率流形、各种几何目标、对数法则以及度量和维度方面的螺旋现象。其中一些结果也是针对恒定负截面曲率流形的新结果。在此背景下,我们进一步建立了 Falconer 的大交点性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diophantine approximation, large intersections and geodesics in negative curvature
In this paper, we prove quantitative results about geodesic approximations to submanifolds in negatively curved spaces. Among the main tools is a new and general Jarník–Besicovitch type theorem in Diophantine approximation. Our framework allows manifolds of variable negative curvature, a variety of geometric targets, and logarithm laws as well as spiraling phenomena in both measure and dimension aspect. Several of the results are new also for manifolds of constant negative sectional curvature. We further establish a large intersection property of Falconer in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信