线性约束框架的全局刚性

IF 0.9 3区 数学 Q2 MATHEMATICS
James Cruickshank, Fatemeh Mohammadi, Harshit J. Motwani, Anthony Nixon, Shin-ichi Tanigawa
{"title":"线性约束框架的全局刚性","authors":"James Cruickshank, Fatemeh Mohammadi, Harshit J. Motwani, Anthony Nixon, Shin-ichi Tanigawa","doi":"10.1137/22m151707x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 743-763, March 2024. <br/> Abstract. We consider the global rigidity problem for bar-joint frameworks where each vertex is constrained to lie on a particular line in [math]. In our setting, we allow multiple vertices to be constrained to the same line. We give a combinatorial characterization of generic rigidity in this setting for arbitrary line sets. Further, under a mild assumption on the given set of lines, we give a complete combinatorial characterization of graphs that are generically globally rigid. This gives a [math]-dimensional extension of the well-known combinatorial characterization of two-dimensional global rigidity. In particular, our results imply that global rigidity is a generic property in this setting.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"88 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Rigidity of Line Constrained Frameworks\",\"authors\":\"James Cruickshank, Fatemeh Mohammadi, Harshit J. Motwani, Anthony Nixon, Shin-ichi Tanigawa\",\"doi\":\"10.1137/22m151707x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 743-763, March 2024. <br/> Abstract. We consider the global rigidity problem for bar-joint frameworks where each vertex is constrained to lie on a particular line in [math]. In our setting, we allow multiple vertices to be constrained to the same line. We give a combinatorial characterization of generic rigidity in this setting for arbitrary line sets. Further, under a mild assumption on the given set of lines, we give a complete combinatorial characterization of graphs that are generically globally rigid. This gives a [math]-dimensional extension of the well-known combinatorial characterization of two-dimensional global rigidity. In particular, our results imply that global rigidity is a generic property in this setting.\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m151707x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m151707x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷,第 1 期,第 743-763 页,2024 年 3 月。 摘要。我们在[math]中考虑了条形连接框架的全局刚度问题,其中每个顶点都被约束在特定的直线上。在我们的设置中,我们允许多个顶点被约束在同一条直线上。在这种情况下,我们给出了任意线集一般刚性的组合特征。此外,在给定线集的温和假设下,我们给出了一般全局刚性图的完整组合特征。这给出了著名的二维全局刚性组合特征的[数学]维扩展。特别是,我们的结果意味着全局刚性是这种情况下的一个通用属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Rigidity of Line Constrained Frameworks
SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 743-763, March 2024.
Abstract. We consider the global rigidity problem for bar-joint frameworks where each vertex is constrained to lie on a particular line in [math]. In our setting, we allow multiple vertices to be constrained to the same line. We give a combinatorial characterization of generic rigidity in this setting for arbitrary line sets. Further, under a mild assumption on the given set of lines, we give a complete combinatorial characterization of graphs that are generically globally rigid. This gives a [math]-dimensional extension of the well-known combinatorial characterization of two-dimensional global rigidity. In particular, our results imply that global rigidity is a generic property in this setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信